
Available online at www.isr-publications.com/jmcs
J. Math. Computer Sci., 18 (2018), 154–162

Research Article

Journal Homepage: www.tjmcs.com - www.isr-publications.com/jmcs

Dynamical analysis on prey refuge in a predator-prey model with square root
functional response

Liujuan Chen∗, Yiqin Wang

Department of Science Training, Fujian Institute of Education, Fuzhou, Fujian, 350025, P. R. China.

Abstract

In this paper, we consider a predator-prey model with square root functional response and prey refuge. The study reveals
that the dynamical behavior near the origin of the model is subtle and interesting. We also show that the model undergoes
Transcritical bifurcation and Hopf bifurcation. Numerical simulations not only illustrate our results, but also exhibit richer
dynamical behaviors of the model than those with Holling II type functional response. Taking prey refuge as control variable, it
is feasible to decrease predation rate and then control predator density properly so as to avoid two of population extinction and
promote coexistence.
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1. Introduction

The effects of prey refuges on a predator-prey interaction with various classical functional responses
have been studied during the recent decades, such as Holling type I-IV functional response, Rosenzweig
functional response, etc. The refuges are considered as two types: a constant proportion of prey and a
fixed number of prey using refuges. Prey refuges are widely believed to prevent prey extinction and damp
predator-prey oscillations. For example, Chen et al. have shown that prey refuges having a stabilizing
effect on predator-prey interactions incorporating a constant prey refuge and the dynamic behaviors
deeply dependent on the prey refuge parameter m [3, 4]. Kar [10] and Huang et al. [7] have studied
a Lotka-Volterra type predator-prey system with Holling type II response function and Holling type III
response function, respectively, incorporating a constant proportion of prey using refuges mx, which
protects mx of prey from predation. They have all derived that increasing the amount of refuge could
increase prey densities and lead to population outbreaks. On the other hand, Ma et al. have obtained
that prey refuges can destabilize the interior equilibrium point of a predator-prey model with a class
of functional responses under a very restricted set of conditions [14]. In [15], McNair obtained that a
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prey refuge with legitimate entry-exit dynamics was capable of amplifying predator-prey oscillations and
several kinds of refuges could exert a locally destabilizing effect in [16]. For more biological backgrounds
and results on the effects of a prey refuge, one could refer to [5, 6, 9, 11–13] and the references therein.

Recently, Ajraldi et al. [1] and Braza [2] modeled herd behavior in population system, in which the
individuals of one population gather together in herds, while the other one shows a more individualistic
behavior and propound a square root functional response. The authors [1] have discussed the following
forms of symbiosis, competition, and the predator-prey interactions model with square root functional
response:

ẋ = rx
(

1 −
x

Kx

)
+ a
√
xy,

ẏ = my
(

1 −
y

Ky

)
+ ae

√
xy,

where a > 0,ae > 0 represent the symbiosis case, while a < 0,ae < 0 represent the competition case, and

ẋ = rx
(
1 −

x

Kx

)
− a
√
xy,

ẏ = −my+ ae
√
xy,

where a > 0,ae > 0 represent the predator-prey case. By the method of qualitative analysis, they have
shown that the socialized herd behavior prevents the competing individualistic population from becoming
extinct and for the predator-prey case, they have derived sustained limit cycles. Braza [2] propounded
the following predator-prey system with square root functional response, which appropriately models
system in which the prey exhibits strong herd structure and the predator interacts with the prey along
the outer corridor of the herd

ẋ = rx
(
1 −

x

K

)
−

α
√
xy

1 + hα
√
x

,

ẏ = −sy+
cα
√
xy

1 + hα
√
x

,
(1.1)

where x,y denote prey and predator population at time t, respectively; r,k, s,α, c are positive constants
and h is nonnegative. Here r represents the intrinsic growth rate and k the carrying capacity of the
prey; h represents predator average handling time of prey; s is the death rate of the predator; and c is
the conversion factor denoting the number of newly born predators for each captured prey. The term
α
√
x

1+hα
√
x

denotes the square root functional response of the predator. In [2], the author has studied the
case of h = 0, which gives the modified Lotka-Volterra interaction term

√
xy and is in line with the work

[1], and it shows that if the prey is considerably smaller than the predator, then the prey first goes extinct
and causes the predator to follow suit.

As we have seen, the considered models in [1, 2] reveals some interesting results because of the square
root term. A natural question is: how do the prey refuges affect the dynamical behaviors of the model
(1.1)? Stabilize or destabilize or no influence? That will be a popular and interesting issue.

To the best of the authors knowledge, to this day, still no scholars investigate the influence of prey
refuges on a predator-prey interactions with square root functional response, this motivates us to propose
the following model

ẋ = rx
(
1 −

x

K

)
−

α
√
(1 −m)xy

1 + hα
√
(1 −m)x

,

ẏ = −sy+
cα
√

(1 −m)xy

1 + hα
√

(1 −m)x
,

(1.2)

where m ∈ [0, 1) denotes a constant proportion of prey using refuges, which protects mx of prey from
predation, and we will study the dynamical behavior of model (1.2).
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The rest of the paper is organized as follows. Dynamical analysis of the model are given in Section 2
and the influence of prey refuges is analyzed in Section 3. Some numeric simulations which illustrate the
feasibility of our finding are also given in Section 3. This paper ends by a brief conclusion.

2. Dynamical analysis of model (1.2)

Let Ω = {(x,y)|x > 0,y > 0}, for practical biological meaning, we simply study model (1.2) in Ω or in
Ω.

Similarly to the proof in [3, 4], we have the following.

Lemma 2.1. The solution x(t),y(t) of model (1.2) with initial values x(0) > 0,y(0) > 0 are positive and bounded
for all t > 0.

For simplicity, we take the following scaling: t =
(

1+hα
√
(1 −m)x

)
τ and then system (1.2) takes the

following form (still denotes τ as t)

ẋ = rx
(
1 −

x

K

)[
1 + hα

√
(1 −m)x

]
−α

√
(1 −m)xy

∆
= P(x,y),

ẏ =
[
− s+α(c− hs)

√
(1 −m)x

]
y
∆
= Q(x,y).

(2.1)

System (2.1) has at most three equilibria E1(0, 0),E2(K, 0),E∗(x∗,y∗) in Ω, where x∗ =
s2

α2(c− hs)2(1 −m)
,

y∗ =
crs[Kα2(c− hs)2(1 −m) − s2]

Kα4(c− hs)4(1 −m)2 . E∗(x∗,y∗) is a unique positive equilibrium if and only if 0 6 m <

1 −
s2

Kα2(c− hs)2 . If c 6 hs holds, then it follows from (2.1) that limt→+∞ y(t) = 0. Without loss of

generality, in the following we always suppose that c > hs.

Let p=s2(3c+ hs) −Kα2(c− hs)2(c+ hs)(1 −m), A = 1 −
s2

Kα2(c− hs)2 , and

B = 1 −
s2(3c+ hs)

Kα2(c− hs)2(c+ hs)
.

Lemma 2.2.

(I) If A < m < 1 holds, then E2 is stable node point; if 0 6 m < A holds, then E2 is saddle point;

(II) E∗ is locally asymptotically stable for B < m < A and E∗ is unstable for 0 6 m < B.

Proof.

(I) The Jacobian matrix of system (2.1) for E2 is given by

J(E2) =

(
−r− rhα

√
(1 −m)K −α

√
(1 −m)K

0 −s+α(c− hs)
√
(1 −m)K

)
.

If A < m < 1 holds, the eigenvalues of matrix −r− rhα
√
(1 −m)K and −s+ α(c− hs)

√
(1 −m)K are

negative, hence, E2 is locally asymptotically stable and furthermore E2 is stable node point. If 0 6 m < A

holds, one of the eigenvalues of matrix −s+ α(c− hs)
√
(1 −m)K is positive, hence, E2 is unstable and

furthermore E2 is saddle point.

(II) The Jacobian matrix of system (2.1) for E∗ is given by

J(E∗) =

(
− rp

2Kα2(c−hs)3(1−m)
− s
c−hs

rc[Kα2(c−hs)2(1−m)−s2]
2Kα2(c−hs)2(1−m)

0

)
.
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Note that 0 6 m < A holds,

det(J(E∗)) =
rcs
[
Kα2(c− hs)2(1 −m) − s2

]
2Kα2(c− hs)3(1 −m)

> 0.

If B < m < A holds, then p > 0 and tr(J(E∗)) = −
rp

2Kα2(c− hs)3(1 −m)
< 0, E∗ is locally asymptotically

stable. If 0 6 m < B holds, then p < 0 and tr(J(E∗)) > 0, E∗ is unstable. This completes the proof.

Remark 2.3. At the value m = A, E2 coincides with E∗. As parameter m decreases from the value A, E2
becomes unstable and E∗ becomes feasible, while m passes this value, E2 becomes stable and E∗ becomes
infeasible, which shows the transcritical bifurcation.

2.1. Dynamical behavior near the origin
In this subsection, we apply the research method in [2] to discuss the dynamical behavior near the

origin of model (2.1). Similarly, we consider (2.1) for x� 1 and y� 1, then 1−
x

K
≈ 1, 1+hα

√
(1 −m)x ≈

1 and
√
xy� y, so that near the origin, model (2.1) takes the following form

ẋ ≈ rx−α
√

(1 −m)xy,
ẏ ≈ −sy.

(2.2)

From the second equation of (2.2), we have y(t) = y0e
−st with y0 � 1 and consider x = O(yβ), where

β = 1,β = 2, and β > 2. For β = 1, it is easy to derive that the origin is a saddle. For β > 2, since
x�

√
xy, we can reduce (2.2) to the model ẋ ≈ −α

√
(1 −m)xy, ẏ ≈ −sy, which gives the curve

y = y0 +
2s

α
√

1 −m
(
√
x−

√
x0y

β
0 ).

It is part of a parabola that starts at (x0y
β
0 ,y0) and terminates on the y−axis at y = y0 −

2s
α
√

1−m

√
x0y

β
0 > 0,

after which y declines to zero since ẏ ≈ −sy. This means that if the prey population is considerably
smaller than the predator population, then the prey first goes extinct, causing the predator to follow suit.
For β = 2, both x and

√
xy are O(y2) so that equations (2.2) can be solved as

√
x =

α
√

1 −my1+ r
2s + [(r+ 2s)

√
x0 −α

√
1 −my0]y

r
2s
0

(r+ 2s)y
r

2s

in which x(y0) = x0. Similar to the discussion in [2], the trajectory goes into the origin along the parabola
α
√

1 −my = (r+ 2s)
√
x with the initial conditions satisfying α

√
1 −my0 = (r+ 2s)

√
x0. For α

√
1 −my0 >

(r+ 2s)
√
x0, the trajectory terminates at x = 0 at some positive value of y like in the β > 2 case above. For

α
√

1 −my0 < (r+ 2s)
√
x0, the origin acts like a saddle.

2.2. Global stability for E2 and E∗
In this subsection, we assume that E1 is a saddle point.

Theorem 2.4. If A < m < 1 holds, E2(K, 0) is globally asymptotically stable.

Proof. Notice that A < m < 1, model (2.1) does not have positive equilibrium and E1 is unstable. If system
(2.1) exists a closed orbit in Ω, then there must exist an equilibrium in the interior of the closed orbit,
which is impossible. Hence, system (2.1) does not exist limit cycle, from the boundedness of system (2.1),
the stable node point E2 is globally asymptotically stable.

Theorem 2.5. If the positive equilibrium E∗(x∗,y∗) of system (2.1) is locally asymptotically stable, then E∗ is
globally asymptotically stable.
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Proof. Define a Dulac function B(x,y) = x−
1
2yδ−1 and

δ =
r[3s2(c+ hs) −Khsα2(c− hs)2(1 −m)]

Ksα2(c− hs)3(1 −m)
.

If the positive equilibrium E∗ of system (2.1) is locally asymptotically stable, then tr(J(E∗)) < 0 for which
p > 0, and hence δ > 0. From system (2.1), we have

D =
∂(BP)

∂x
+
∂(BQ)

∂y

= x−
1
2yδ−1[

r

2
+ rhα

√
1 −mx

1
2 −

3r
2K
x−

2rhα
√

1 −m

K
x

3
2 − δs+ δα(c− hs)

√
1 −mx

1
2 ]

∆
= x−

1
2yδ−1φ(x).

Then φ ′(x) =
rhα
√

1 −m

2
x−

1
2 −

3r
2K

−
3rhα

√
1 −m

K
x

1
2 +

δα(c− hs)
√

1 −m

2
x−

1
2 and

φ ′′(x) = −
rhα
√

1 −m

4
x−

3
2 −

3rhα
√

1 −m

2K
x−

1
2 −

δα(c− hs)
√

1 −m

4
x−

3
2 .

It is easy to see that φ ′′(x) < 0 for all x > 0, since δ > 0, then, for all x > 0, φ ′(x) decreases monotonously.
Simple computation shows that φ ′(x∗) = 0, then 0 < x < x∗ holds, φ ′(x) > 0 for which φ(x) increases
monotonously; x > x∗ holds, φ ′(x) < 0 for which φ(x) decreases monotonously. Therefore, for all x > 0,
φ(x) 6 φ(x∗), and φ(x∗) = −

rp

2Kα2(c− hs)3(1 −m)
< 0, then we derive φ(x) < 0, for all x > 0. That is for

all x > 0, D < 0, system (2.1) does not exist limit cycle in Ω, from the boundedness of system (2.1), E∗ is
globally asymptotically stable.

From Lemma 2.2 and Theorem 2.5, we have following corollary.

Corollary 2.6. If B < m < A holds, then E∗ is globally asymptotically stable.

2.3. Existence and uniqueness of limit cycle
In this subsection, we also assume that E1 is a saddle point.

Theorem 2.7. If the positive equilibrium E∗(x∗,y∗) of system (2.1) is unstable, then system (2.1) admits at least
one limit cycle in Ω.

Proof. For system (2.1), construct a Bendixson ring ̂OABCO including E∗. Define OA, AB, BC, CO as
a length of line L1 = y = 0, L2 = x − K = 0 (y > 0), L3 = y + cx − n = 0 (0 < x < K, n is large
enough), and L4 = x = 0, respectively. Since OA, CO is a length of orbit of system (2.1), respectively

and dL2

dt

∣∣∣
(2.1)

= −
α
√

(1−m)Ky

1+hα
√

(1−m)K
< 0 (y > 0), dL3

dt

∣∣∣
(2.1)

= −s(n− cx) + crx(1 − x
K) < 0 (0 < x < K, n is

large enough), the orbits of system (2.1) go through into the interior of the Bendixson ring from the outer
of AB, BC. By Poincaré-Bendixson Theorem, if E∗(x∗,y∗) is an unstable equilibrium, then system (2.1)
admits at least one limit cycle in region ̂OABCO ⊂ Ω. This completes the proof of Theorem 2.7.

Theorem 2.8. If the positive equilibrium E∗(x∗,y∗) of system (2.1) is unstable, then system (2.1) admits at most
one limit cycle which is globally asymptotically stable in Ω.

Proof. In order to proof Theorem 2.8, we take the following change of variables u = α
√

1 −my, then
system (2.1) takes the following form

ẋ = ϕ(x)(h(x) − u),
u̇ = ψ(x)u,
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where ϕ(x) =
√
x, h(x) = r

√
x(1 − x

K)(1 + hα
√

(1 −m)x), ψ(x) = −s+α(c− hs)
√
(1 −m)x. According to

Hwang [8], it is sufficient to show that

d
dx
(
ϕ(x)h ′(x)/ψ(x)

)
< 0, x ∈ (0,K) − {x∗}.

d
dx

(
ϕ(x)h ′(x)/ψ(x)

)
=
r
[

3s
2K −

α(c+hs)
√

1−m
4 x−

1
2 −

3α(c−5hs)
√

1−m
4K x

1
2 −

2hα2(c−hs)(1−m)
K x

]
(
− s+α(c− hs)

√
(1 −m)x

)2 ,

d
dx

(ϕ(x)h ′(x)/ψ(x))
(−s+α(c− hs)

√
(1 −m)x)2x

1
2

r

∆
= H(x),

H(x) =
3s
2K
x

1
2 −

α(c+ hs)
√

1 −m

4
−

3α(c− 5hs)
√

1 −m

4K
x−

2hα2(c− hs)(1 −m)

K
x

3
2 .

In the following, we will show that H(x) < 0 for all x > 0.

H ′(x) =
3s
4K
x−

1
2 −

3α(c− 5hs)
√

1 −m

4K
−

3hα2(c− hs)(1 −m)

K
x

1
2 ,

H ′′(x) = −
3s
8K
x−

3
2 −

3hα2(c− hs)(1 −m)

2K
x−

1
2 .

It is easy to see that H ′′(x) < 0 for all x > 0, then, for all x > 0, H ′(x) decreases monotonously. Sim-
ple computation shows that H ′(x∗) = 0, then 0 < x < x∗ holds, H ′(x) > 0 for which H(x) increases
monotonously; x > x∗ holds, H ′(x) < 0 for which H(x) decreases monotonously. Therefore, for all x > 0,
H(x) 6 H(x∗), and H(x∗) =

p

4kα(c− hs)2
√

1 −m
< 0, since the positive equilibrium E∗(x∗,y∗) of system

(2.1) is unstable, then tr(J(E∗)) > 0 for which p < 0. Then, we derive H(x) < 0 for all x > 0. That is, for all
x ∈ (0,K) − {x∗}, d

dx(ϕ(x)h
′(x)/ψ(x)) < 0. This completes the proof of Theorem 2.8.

From Lemma 2.2 and Theorems 2.7 and 2.8 we have the following corollary.

Corollary 2.9. If 0 6 m < B holds, then system (2.1) admits exactly one limit cycle which is globally asymptotically
stable in Ω .

Remark 2.10. At the value m = B, the eigenvalues of matrix J(E∗) are a pair of purely imaginary, i.e.,
±c
√

rs
(c−hs)(3c+hs) i. With the parameter m passes through the value B, the stability of equilibrium E∗

takes overturning, which meaning that model (2.1) undergoes Hopf bifurcation around E∗ at m = B.

3. The influence of prey refuge and numerical simulations

It is easy to see that x∗,y∗ are all continuous differential functions of parameter m and

dx∗
dm

=
s2

α2(c− hs)2(1 −m)2 > 0,
dy∗
dm

=
rsc[Kα2(c− hs)2(1 −m) − 2s2]

Kα4(c− hs)4(1 −m)3 .

Obviously, x∗ is the strictly increasing function of parameter m and increasing the prey refuge leads to

the increasing of the density of prey species. Let m∗ = 1 −
2s2

Kα2(c− hs)2 , then it follows that dy∗
dm > 0 for

all m ∈ (0,m∗) and dy∗
dm < 0 for all m ∈ (m∗, 1). Thus, there exists a threshold m = m∗ such that y∗ is the

strictly increasing function of parameter m for all m ∈ (0,m∗), while y∗ is the strictly decreasing function
of parameter m for all m ∈ (m∗, 1). y∗ attains its maximum value at m = m∗, the maximum value equals
to rcK

4s .
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Consider the following model

ẋ = 5x
(
1 −

x

60
)
−

1.2
√
(1 −m)xy

1 + 0.24
√
(1 −m)x

,

ẏ = −y+
0.48

√
(1 −m)xy

1 + 0.24
√
(1 −m)x

,

(3.1)

where K = 60, r = 5, s = 1, α = 1.2, h = 0.2, c = 0.4. By simple computation, we derive that m∗ ≈
0.4213, A ≈ 0.7106, and B ≈ 0.3249. Then, the densities of predator species increase as m ∈ [0, 0.4213)
while decrease as m ∈ [0.4213, 1). Under the assumption that E1 is saddle point, we have (1) 0 6 m <

0.3249, the condition of Corollary 2.9 holds, model (3.1) admits exactly one limit cycle; (2) 0.3249 < m <

0.7106, the condition of Corollary2.6 holds, E∗ is globally stable; (3) 0.7106 < m < 1, the condition of
Theorem 2.4 holds , E2 is globally stable. Fig. 1 shows above dynamic behavior of model (3.1). Under the
assumption that E1 is not saddle point, Fig. 2 (b) and Fig. 2 (c) show that three different orbits terminate
on the predator axis and then decline to zero, another three different orbits tend to E∗ or E2, respectively,
i.e. E∗ or E2 is locally asymptotically stable; Fig. 2 (a) shows that all trajectories go around the unstable
equilibrium E∗ and eventually terminate on the predator axis and then decline to zero. Dynamical analysis
of model (1.2) can be summarized and classified into the Table 1.

Table 1: Schematic representation of our analytical findings: LAS=locally asymptotically stable, GAS=globally asymptotically
stable.

Condition E1 E2 E∗ Bifurcation Phase portrait
0 6 m < B saddle point Unstable Unstable Fig. 1 (a)

not saddle point Unstable Unstable Fig. 2 (a)
m = B Hopf
B < m < A saddle point Unstable GAS Fig. 1 (b)

not saddle point Unstable LAS Fig. 2 (b)
m = A Transcritical at E2 = E∗
A < m < 1 saddle point GAS Infeasible Fig. 1 (c)

not saddle point LAS Infeasible Fig. 2 (c)

4. Conclusions

In this paper, we have considered the dynamical behavior of a predator-prey model with square root
functional response and prey refuge. Depending on the technique of qualitative analysis, we have given
the complete qualitative analysis of the instability and global stability properties of the equilibria and the
existence and uniqueness of limit cycles for the considered model. Taking prey refuge m as a bifurcation
parameter, it is shown that the model undergoes Transcritical bifurcation and Hopf bifurcation. Numerical
simulations indicate the more complex dynamical behaviors of the model than those with Holling II type
functional response in which the origin is unstable (e.g. [2, 4, 7, 8]). Fig. 1 and Fig. 2 show that the
origin of the model acts not only a saddle point, more specifically, some trajectories eventually terminate
on the predator axis and then decline to zero. In particular, when prey refuge m is less than the Hopf
bifurcation value, as the value of prey refuge m used in Fig. 2 (a), the origin can be the stable global
attractor. From the perspective of ecological significance, if the value of prey refuge m is too small, then
more prey population is captured by predator population and its own fecundity leads to the demise of the
prey and then itself. Hence, taking prey refuge m as control variable, it is feasible to decrease predation
rate and then control predator density properly so as to avoid two of population extinction and promote
coexistence.
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(a) there is a stable limit cycle surrounding E∗(25.3447, 29.2775)
with m = 0.315.

(b) E∗(26.7094, 29.6391) is globally asymptotically stable with
m = 0.35.

(c) E2(60, 0) is globally asymptotically stable with m = 0.8.

Figure 1: E1 is saddle point. The phase portrait of system (1.2) for the different values of prey refuge m.

(a) All trajectories go around E∗(24.8016, 29.0993) and eventually terminate on the predator axis and then decline to zero with
m = 0.3.

(b) E∗(28.9352, 29.9620) is locally asymptotically stable with
m = 0.4.

(c) E2(60, 0) is locally asymptotically stable with m = 0.75.

Figure 2: E1 is not saddle point. The phase portrait of system (1.2) for the different values of prey refuge m.
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[6] E. González-Olivares, R. Ramos-Jiliberto, Dynamic consequences of prey refuges in a simple model system: more prey,
fewer predators and enhanced stability, Ecol. Modell., 166 (2003), 135–146. 1

[7] Y.-J. Huang, F.-D. Chen, Z. Li, Stability analysis of a prey-predator model with Holling type III response function incorpo-
rating a prey refuge, Appl. Math. Comput., 182 (2006), 672–683. 1, 4

[8] T.-W. Hwang, Uniqueness of the limit cycle for Gause-type predator-prey systems, J. Math. Anal. Appl., 238 (1999),
179–195. 2.3, 4

[9] L.-L. Ji, C.-Q. Wu, Qualitative analysis of a predator-prey model with constant-rate prey harvesting incorporating a constant
prey refuge, Nonlinear Anal. Real World Appl., 11 (2010), 2285–2295. 1

[10] T. K. Kar, Stability analysis of a prey-predator model incorporating a prey refuge, Commun. Nonlinear Sci. Numer.
Simul., 10 (2005), 681–691. 1

[11] T. K. Kar, Modelling and analysis of a harvested prey-predator system incorporating a prey refuge, J. Comput. Appl.
Math., 185 (2006), 19–33. 1

[12] W.-Y. Ko, K.-M. Ryu, Qualitative analysis of a predator-prey model with Holling type II functional response incorporating
a prey refuge, J. Differential Equations, 231 (2006), 534–550.
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