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Abstract

Let f : M — M be a diffeomorphism on a closed smooth n(n > 2)-dimensional manifold M and let p be a hyperbolic
periodic point of f. We show that if the homoclinic class H¢(p) is R-robustly measure expansive then it is hyperbolic.
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1. Introduction

Roughly speaking, definition of expansiveness is, if two orbits are closed then they are one orbit which
was introduced by Utz [22]. A main research is to study structure of the orbits in differentiable dynamical
systems, and so a goal of differentiable dynamical system is to study stability properties (Anosov, Axiom
A, hyperbolic, structurally stable, etc.). Therefore, expansiveness is an important notion to study stability
properties. For instance, Mafié¢ [11] proved that if a diffeomorphism is C! robustly expansive then it is
quasi-Anosov. Arbieto [1] proved that for C! generic an expansive diffeomorphism is Axiom A without
cycles. For expansivity, we can find various generalization notations, that is, continuum-wise expansive
[5], n-expansive [13], and measure expansive [14]. Among that, we study measure expansiveness in the
paper. Let M be a closed smooth n (n > 2)-dimensional Riemmanian manifold, and let Diff(M) be the
space of diffeomorphisms of M endowed with the C!-topology. Denote by d the distance on M induced
from a Riemannian metric | - | on the tangent bundle TM. Let A be a closed f-invariant set. We say that
A is hyperbolic if the tangent bundle TAM has a Df-invariant splitting E® © E' and there exist constants
C>0and 0 <A <1 such that

IDxf™es | < CA™ and [|Dyf ™gy]| < CA™

forall x € Aand n > 0. If A = M, then we say that f is Anosov.
For any closed f-invariant set A C M, we say that A is expansive for f, if there is e > 0 such that for
any x,y € Aif d(f™(x), f™*(y)) < e then x =y. Equivalently, A is expansive for f if there is e > 0 such that
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rf(x) = {x} for all x € A, where Tf(x) = {y € A : d(f}(x),f'(y)) < e forall i € Z}. Let M(M) be the set
of all Borel probability measures on M endowed with the weak* topology, and let M*(M) be the set of
nonatomic measures i € M(M). For any p € M*(M), we say that A is p-expansive for f if u(I'f(x)) =0. A
is said to be measure expansive for f if A is p-expansive for all © € M*(M); that is, there is a constant e > 0
such that for any € M*(M) and x € A, u(T'f(x)) = 0. Here e is called a measure expansive constant of f|.
Clearly, the expansiveness implies the measure expansiveness, but the converse does not hold in general
(see [14, Theorem 1.35]). We say that f is quasi-Anosov if for any v € TM \ {0}, the set {||[Df* (V)| : n € Z} is
unbounded. Sakai et al. [19] proved that if a diffeomorphism f is C! robustly measure expansive then it
is quasi-Anosov. Lee [7] proved that for C 1 generic f, if f is measure expansive then it is Axiom A without
cycles. It is well known that if p is a hyperbolic periodic point of f with period 7(p) then the sets

W (p) ={x e M: PN (x) - pasn — oo}
and
WY(p)={xe M: PN (x) - p asn — oo}

are Cl-injectively immersed submanifolds of M. A point x € W$(p) th W' (p) is called a homoclinic point
of f associated to p. The closure of the homoclinic points of f associated to p is called the homoclinic class
of f associated to p, and it is denoted by H¢(p). It is clear that H¢(p) is compact, transitive, and invariant.

Denote by P(f) the set of all periodic points of f. Let q be a hyperbolic periodic point of f. We say that
p and q are homoclinically related, and write p ~ q if

W (p)hW*(q) # 0 and W* (p)hW*(q) # 0.

It is clear that if p ~ g then index(p) = index(q), that is, dimW?*(p) = dimW?*(q). By the Smale’s
transverse homoclinic point theorem, H¢(p) = {q € Pn(f) : g ~ p}, where A is the closure of the set A and
Py, (f) is the set of all hyperbolic periodic points. Note that if p is a hyperbolic periodic point of f then
there is a neighborhood U of p and a C!-neighborhood U(f) of f such that for any g € U(f) there exists a
unique hyperbolic periodic point pg of g in U with the same period as p and index(pgy) = index(p). Such
a point pq is called the continuation of p = p¢. We say that A is locally maximal if there is a neighborhood
U of A such that A =, ¢z f™(U).

In differentiable dynamical systems, a main research topic is to study that for a given system, if the
system has a property then we consider that a system which is C!-nearby system has the same property.
Then, we consider various type of Cl-perturbation property on a closed invariant set which are the
following.

(a) We say that H¢(p) is C! robustly S property if there is a Cl-neighborhood U(f) of f such that for any
g € U(f), Hg(pg) is P property. If P is expansive then the expansive constant is uniform, which
means that the constant only depends on f (see [15, 16]).

(b) We say that H¢(p) is C! persistently S property if there is a Cl-neighborhood U(f) of f such that for
any g € U(f), Hg(pg) is P property. If P is expansive then the expansive constant is not uniform
which means that the constant depends on g € U(f) (see [20]).

(c) We say that H¢(p) is C! stably S8 property if there are a C!-neighborhood U(f) of f and a neighborhood
U of H¢(p) such that for any g € U(f), Ag(U) is P property, where Ag(U) = (),,cz g™ (U) is the
continuation of H¢(p). If °B is expansive, then the expansive constant is not uniform which means
that the constant depends on g € U(f) (see [8]).

In the item (c), we can also consider a closed invariant set. We say that a subset § C Diff(M) is residual if
G contains the intersection of a countable family of open and dense subsets of Diff(M); in this case G is
dense in Diff(M). A property P is said to be ( Cl )-generic if P holds for all diffeomorphisms which belong
to some residual subset of Diff(M).

Li [10] introduced another C! robust property which is called R-robustly S property. Using to the
notion, we consider the following.
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Definition 1.1. Let the homoclinic class H¢(p) associated to a hyperbolic periodic point p. We say that
H¢(p) is R-robustly measure expansive if there are a Cl—neighborhood U(F) of f and a residual set § of U(T)
such that for any g € §, Hg(pg) is measure expansive, where pg is the continuation of p.

Recently, Pacificao and Vieites [17] proved that a diffeomorphism f in a residual subset far from
homoclinic tangencies are measure expansive. Lee and Lee [9] proved that if the homoclinic class H¢(p)
is C! stably measure expansive then it is hyperbolic. Koo et al. [6] proved that for C! generic f, if a locally
maximal homoclinic class H¢(p) is measure expansive, then it is hyperbolic. Owing to the result, we have
the following which is a main theorem of the paper.

Theorem 1.2. Let the homoclinic class H¢(p) associated to a hyperbolic periodic point p. If H¢(p) is R-robustly
measure expansive then it is hyperbolic.

2. Dominated splitting and Hyperbolic periodic points in H¢(p)

Let M be as before, and let f € Diff(M). A periodic point for f is a point p € M such that P (p) = p,
where 7t(p) is the minimum period of p. Denote by P(f) the set of all periodic points of f. For given
X,y € M, we write x — y if for any & > 0, there is a 5-pseudo orbit {x;}{* ;(n > 1) of f such that xy = x and
Xn =Y. We write x «» y if x =y and y — x. The set of points {x € M : x <+ x} is called the chain recurrent
set of f and is denoted by R(f). It is clear that P(f) C Q(f) C R(f). Here Q(f) is the non-wandering set of
f. Let p be a hyperbolic periodic point of f. We say that the chain component if for any x € M, x — p and
p — x and denote it by C¢(p). Note that the chain component C¢(p) of f is a equivalent class, it is a closed
set and f-invariant set. The following was proved by Bonatti and Crovisier [2].

Remark 2.1. There is a residual set §; C Diff(M) such that for any f € G1, Hg(p) = C¢(p) for some
hyperbolic periodic point p.

Proposition 2.2. Let the homoclinic class H¢(p) be R-robustly measure expansive. If x € W*(p) N WY (p), then
x € W8(p) h WH(p).

Proof. Since H¢(p) is R-robustly measure expansive, there exists a C!-neighborhood U(f) and a residual
set § C U(f) such that for any g € G, Hg(pg) is measure expansive. Let § = G;. Since x € W*(p) N W¥(p),
by [17, Proposition 2.6], there is g € U(f) N G such that we can make a small arc J C W*(pg) N W (pg).
Since Hgy(pg) = Cq4lpg), we know J C Cq4(pg). Let diam(J) = L. We define a measure u € M*(M) by
1(C) =v(CnNJ) for any Borel set C of M, where v is a normalized Lebesgue measure on J. Let e = 1/4 be
a measure expansive constant. Since J C W*(pg) N W (pg), there is N > 0 such that diam(g*(J)) < e/4
for —-N < i < N, and ¢*(J) € WS ,(pg) NWY,(pg) for [il > N. Thus for all i € Z, we know that

e/4
diam(g*(J)) < e. Recall that

Fe(x) ={y € Hy(pg) : d(g*(x), g'(y)) < eforiec Z}.

We can construct the set ' ‘
Ac(x) ={y €d:d(g'(x),g'(y)) <eforicZ}

Then we know A¢(x) C le(x). Thus we have
0 < p(Ae(x)) < pTe(x)),
which is a contradiction to the measure expansivity of Hg(pg). O

For f € Diff(M), we say that a compact f-invariant set A admits a dominated splitting if the tangent
bundle TAM has a continuous Df-invariant splitting E @ F and there exist C > 0, 0 < A < 1 such that for
all x € A and n > 0, we have

IDF™ e ()1 [IDF M g em ey Il < CA™
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Theorem 2.3. Let H¢(p) be the homoclinic class containing a hyperbolic periodic point p. Suppose that He(p) is
R-robustly measure expansive. Then there exist a C'-neighborhood U(f) of f and a residual set G C U(f) such that
forany g € §, Hg(pg) admits a dominated splitting Ty, )M = E(g) @ F(g) with index(pg) = dimE(g).

Proof. Suppose that H¢(p) is R-robustly measure expansive. Then as in the proof of [20, Theorem 1],
there is m > 0 such that for every x € W*(p) h W*(p) there exists m; € [90, m] such that [|[Df™[g || -
[Df~™ g (¢mi(x)) || < 1/2. Since the dominated splitting can be extended by continuity to the

Ws(p) h WH(p) = He(p),
we have that H¢(p) has a dominated splitting E @ F. O

Theorem 2.4. Let the homoclinic class He¢(p) be R-robustly measure expansive. Then there exist C > 0,0 <A <1
and m > 0 such that q is a hyperbolic periodic point of period t(q) and q ~ p, then

k—1 k—1
H HDfmh:_s(fim(q))H < C)\k and H ||Df_m|1:_u(f—im(q))|| < C)\k,
i=0 i=0

where k = [1t(q)/ml([-] represents the integer part).

Proof. Since H¢(p) is R-robustly measure expansive, there are a C!-neighborhood U(f) and a residual set
§ C U(f) such that for any g € G, Hg(pg) is measure expansive. Let § = G;. Since q € H¢(p) and p ~ q,
as in the proof of [20], it is enough to show that the family of periodic sequences of linear isomorphisms
of R™ generated by Df along the hyperbolic periodic points q € H¢(p),q ~ p and index(p) = index(q)
is uniformly hyperbolic. Suppose, by contradiction, that the assume does not hold. Then as in the proof
of [18, Theorem B], we may assume that a hyperbolic periodic point q € H¢(p) such that the weakest
normalized eigenvalue A is close to 1. Then by Franks lemma, there is g € G such that for any small
Y > 0 we can construct a closed small curve J4 containing q or a closed small circle €4 centered at q
such that J4 C C4(pgy) and two endpoints are related to pg and €q C Cy4(pg). Note that Jq and Cq are
g™(9)-invariant, normally hyperbolic, and g'7™(4)|; o is the identity map for some | > 0 (see [18]). For Jq,
we define a measure p € M*(M) by

lrt(q)—1

O = —— 3 V(g {(CNg'(dy))

i=0
for any Borel set C of M, where v is a normalized Lebesgue measure on J4. Let v < e be a measure
expansive constant of gly, (p,)- By [14, Proposition], g is measure expansive if and only if g™ is measure

expansive forn € Z\{0}. Let T¢(x) ={y € Hg(pg) : d(g”‘(qﬁ(x), g”‘(q)i(y)) < e, for all i € Z}. Then we
have

{y €Jq:d(g"™Wi(x), g™ i(y)) < efor allic Z} ={yeJq:d(g'(x),g'(y)) <efor allie Z}.

Thus we know . .
0<pu(fyelq:dlg'(x),g'(y)) <efor allieZ}) < pu(TY(x)).

Since Hy(pg) is measure expansive for g, we know p(I'¢ (x)) = 0. Thus we have
u({y €94 : d(g'(x), g'(y)) < e for allie Z}) =0.

This is a contradiction.
For Cq case, if €4 is irrational rotation then using the Franks” lemma, there is h € U(g) NG such that
Cq,, is rational rotation which is centered at qn, where U(g) is a Cl-neighborhood of g, and gy, is the
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continuation of q for h. Then there is k > 0 such that h* : €4, — €, is the identity map. Then we define

a measure p € M*(M) by
k—1
1 . .
K(B) = 2_n(h'(BNhT(Eg,))
i=0
for any Borel set B of M, where 1 is a normalized Lebesgue measure on Cq,,. Then as in the proof of
previous argument, we can derive a contradiction. O

By [14, Proposition], g is measure expansive if and only if g™ is measure expansive for n € Z\ {0}.
Theorem 2.4 can be rewritten as the following.

Theorem 2.5. Let the homoclinic class H¢(p) be R-robustly measure expansive. Then there exist 0 < A < 1 and
L < 1 such that q is a hyperbolic periodic point of period 7(q) with L > 7t(q) and q ~ p, then

mt(q)—1 mt(q)—1
H HDf|ES(f1(q))|| < }\T[(q) and H ||Df71|Eu(f*“(q))H < }\Tc(q).
i=0 i=0

3. Local product structure

Let A be a closed, f-invariant set. We say that A has a local product structure if for given € > 0 there
exists a 6 > 0 such that if d(x,y) < é and x,y € A, then

0 #Wex)NW(y) C A

By the uniqueness of the dominated splitting, if q € H¢(p) is a periodic point with q ~ p then we have
E(q) =E®(q) and F(q) = E*(q). Let dimE = s and by dimF = u, and put Djr =xeR:|x]| <7} (r>0),
for j = s,u. Let EmbA(Di, M) be the space of C! embeddings B : D% — M such that 3(0) € A endowed
with the C! topology. Then we have the following.

Proposition 3.1 ([4, 12]). Let H¢(p) be the homoclinic class of f associated to a hyperbolic periodic point p, and let
A = H¢(p). Suppose that A has a dominated splitting E ® F. Then there exist sections ¢* : A — Emba (D, M)
and ¢* : A — Embn (D}, M) such that by defining WEs(x) = ¢3(x)Dg and Wt (x) = oY (x)DY, for each
x € A, we have

(1) TeWES(x) = E(x) and TGWEY (x) = F(x);

(2) for every 0 < €1 < 1 there exists 0 < €z < 1 such that f(W¢5(x)) € Wg(f(x)) and f_l(Wf:;L(x)) C
WES (1 (x));

(3) for every 0 < e1 < 1 there exists 0 < & < 1 such that if d(x,y) < 0 (x,y € A) then W (x) N WEK(y) # 0,
and this intersection is transverse.

The sets WE*(x) and WY (x) are called the local center stable and local unstable manifolds of x, respec-
tively. The following lemma can be proved similarly to that of Lemma 4 in [20].

Lemma 3.2. Let H¢(p) be the homoclinic class of f associated to a hyperbolic periodic point p, and suppose that
H¢(p) is R-robustly measure expansive. Then for C, A as in Theorem 3.1 and & > 0 satisfying N = A(1+98) < 1
and q ~ p, there exists 0 < €1 < € such that if for all 0 < n < 7(q) it holds that for some €3 > 0, f*(W¢S(q)) C
WES (£ (q)), then

A WE(q) C Wi e, (@)

Similarly, if {7 (WE(q)) € W (f™(q)), then

(W (q)) € W0 (q).

}\/ﬂ(q)gz
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Recall that by using the Smale’s transverse theorem, we have H¢(p) = homo,, where homo, =
{q €Pn(f):q~ph

Lemma 3.3. Let H¢(p) be the homoclinic class of f associated to a hyperbolic periodic point p, and let e > 0 be a
measure expansive constant. Suppose that He(p) is R-robustly measure expansive. Then

(a) for any hyperbolic periodic point q € homoy, and 0 < €1 < e, there is €x > 0 such that
(W5 (q)) C Wel (™ (q)) and £ (Wel(q)) € Welt(f ™ (q)) foralln > 0.
(b) foranyy € W¢3(q) and q € homoy, we have

lim d(f"(q), ™ (y)) = 0.

n—oo

Proof. Let f € G = G; and let H¢(p) is R-robustly measure expansive. To prove (a), it is enough to show
that f*(W¢S(q)) € WP (f(q)). Let sup{dimW¢?P(q) : g € homoy} < e. Since q € homo,,, we define

e(q) =supf{e > 0: f*(W*(q)) € Wi (f"(q)) for all n > 0}

By Proposition 3.1 and Lemma 3.2, e(q) > 0. Let g = inf{le(q) : ¢ € homo,}. If g > 0 then it is a
proof of (a). Suppose, by contradiction, that there is a sequence {qn} C homo,, such that €(qn) — 0 as
n — oco. Then we have 0 < m,; < m(qn) and yn € ngqn)(qn) such that d(f™(qqyn), f™ (yn)) = € for
f™(gn), ™ (yn) € ngqn)(qn). Let I, be a closed connected arc joining f™"(qn) with f™"(yy ). Then
we know that

i) In C ngqn)(qn)}
(ii) fi(In) - ngs(fl(qn)) for0 <i< ﬂ(qn)}
(iii) diam(I,,) = €;.

By Lemma 3.2, we know f”(q“)(ngqH)(qn)) C W(st)\/ﬂ(ane(qn)(qﬂ)‘ Observe that if n — oo then m,, —

oo and 7(qn) — My — oo. Suppose that f™"(q,) — x and f™(yn) — yasn — oo. Then I, — I,
where 1 is a close connected arc joining x with y. It means that diam(f/(I)) < e; for all j € Z, and
x € homo, = H¢(p). We show that the closed connected arc I C H¢(p). Since f € G, H¢(p) = Ct(p).
For any a € I, take a, € ngqn)(qn) such that f™(a,) — a as n — oo. As in the proof of [21,
Lemma 2.6], let € > 0 be arbitrary. Let n € IN be such that e(qn) < €. Then for n sufficiently large,
{qn, flan), ..., f™ an),a, f™* 1 (ay),..., 9" (a,),qn} is a periodic e-chain through a and having
a point in H¢(p). Since qn € homo,, H¢(qn) = H¢(p) = C¢(qn) = C¢(p) and so the closed connected arc
I C H¢(p). We define a measure p € M*(M) by u(C) = ui(CN1I) for any Borel set C of M, where py is a
normalized Lebesgue measure on I. Let

Fe(x) = {y € He(p) : d(f'(x), f'(y)) < e for i € Z}.
Since for all i € Z, diam(f!(I)) < e, we can construct the set
(yel:d(fi(x),f(y)) <eforieZ).
Then we know {y € I: d(f}(x), f'(y)) < e for i € Z} C Te(x). Thus we have
0 < u(fy € I:d(f'(x), f(y)) < efor i€ Z}) < p(le(x)).

Since H¢(p) is measure expansive, u(Ie(x)) = 0. Thus p({y € I: d(f'(x), f(y)) < e for i € Z}) = 0 which
is a contradiction.
The proof of (b) is similar as in the proof of item (b) of [21, Lemma 2.6]. O
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Remark 3.4. In the Lemma 3.3, we consider q € homo,. Then we can extend x € H¢(p), that is, for any
x € H¢(p) and €1 > 0 there exists e; > 0 such that f*(W¢S(x)) € WEP(f™(x)) for all n > 0. And if
z € W¢S(x) and z € He(p), then d(fi(z),f'(x)) = 0 as n — oo.

Proposition 3.5. Suppose that the homoclinic class H¢(p) is R-robustly measure expansive. Then H¢(p) has a local
product structure.

Proof. By Lemma 3.3, there is €3 > 0 such that for any q € homo,
WeS(q) = We, (q) and W (q) = WE (q).
By Proposition 3.1 (3), there is & > 0 such that for any q,r € homo,,

W2, (q) W (1) # 0.

By A-lemma, WE (q) C W#(p) and W, (r) C WY (p). Thus we know that W¢, (q) "W, (r) C H¢(p). This
means that H¢(p) has a local product structure. O

Corollary 3.6. Suppose that the homoclinic class H¢(p) is R-robustly measure expansive. Then for any hyperbolic
periodic point q € H¢(p), index(p) = index(q).

Proof. The proof is directly obtained by Proposition 3.1 (3), Lemma 3.3, and Proposition 3.5. Thus for any
hyperbolic periodic point q € H¢(p),
W= (p) h W¥(q) # 0 and W™ (p) h W*(q) # 0.

Thus we have index(p) = index(q). O

4. Proof of Theorem 1.2

For any & > 0, a sequence {xi}icz is a d-pseudo orbit of f if d(f(x;),xi41) < 6 foralli € Z. Let A be a
closed f-invariant set. We say that f has the shadowing property on A such that for any € > 0 there is 5 > 0
such that for any d-pseudo orbit {x;i}icz C A there is z € M such that d(fi(z),xi) < e for all i € Z. The
following proposition is a very useful result for proving of Theorem 1.2.

Proposition 4.1 ([23, Proposition 3.3]). Let p be a hyperbolic periodic point, and let H¢(p) be the homoclinic class
of f containing p. Let 0 < A < 1 and L > 1 be given. Assume that H¢(p) satisfies the following properties.

(1) There is a continuous Df-invariant splitting Ty, ()M = E @ F with dimE = index(p) such that for any
x € H¢(p),
IDflg () | /MDAl () < A2,

where m(A) = inf||||A]| : |[v|]| = 1} denotes the mininorm of a linear map A.
(2) For any q € He¢(p) NP(f), if q is hyperbolic and 7(q) > L, then index(p) = index(q) and

mt(q)—1 mt(q)—1
[T IDflesirianll <A™, T IDF M eu eyl <A™
i=0 i=0

(3) f has the shadowing property on H¢(p).
Then He(p) is hyperbolic.

End of the Proof of Theorem 1.2. Since H¢(p) is R-robustly measure expansive, by Theorems 2.3 and 2.5,
propositions (1) and (2) hold. By Proposition 3.5 and Bowen’s result [3, Proposition 3.6], if the homo-
clinic class H¢(p) is R-robustly measure expansive then f has the shadowing property on H¢(p), and so,
proposition (3) also holds. Thus if H¢(p) is R-robustly measure expansive then it is hyperbolic. O
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