Available online at www.isr-publications.com/jmcs J. Math. Computer Sci., 18 (2018), 146–153

Research Article

Journal of Mathematics and Computer Science

Online: ISSN 2008-949x

Journal Homepage: www.tjmcs.com - www.isr-publications.com/jmcs

R-robustly measure expansive homoclinic classes are hyperbolic

Manseob Lee

Department of Mathematics, Mokwon University, Daejeon, 302-729, Korea.

Abstract

Let $f: M \to M$ be a diffeomorphism on a closed smooth $\mathfrak{n}(\mathfrak{n} \geqslant 2)$ -dimensional manifold M and let p be a hyperbolic periodic point of f. We show that if the homoclinic class $H_f(\mathfrak{p})$ is R-robustly measure expansive then it is hyperbolic.

Keywords: Expansive, measure expansive, local product structure, shadowing, hyperbolic, homoclinic class, generic.

2010 MSC: 34D10, 37C20, 37C29, 37C50, 37D30.

©2018 All rights reserved.

1. Introduction

Roughly speaking, definition of expansiveness is, if two orbits are closed then they are one orbit which was introduced by Utz [22]. A main research is to study structure of the orbits in differentiable dynamical systems, and so a goal of differentiable dynamical system is to study stability properties (Anosov, Axiom A, hyperbolic, structurally stable, etc.). Therefore, expansiveness is an important notion to study stability properties. For instance, Mañé [11] proved that if a diffeomorphism is C^1 robustly expansive then it is quasi-Anosov. Arbieto [1] proved that for C^1 generic an expansive diffeomorphism is Axiom A without cycles. For expansivity, we can find various generalization notations, that is, continuum-wise expansive [5], n-expansive [13], and measure expansive [14]. Among that, we study measure expansiveness in the paper. Let M be a closed smooth n ($n \ge 2$)-dimensional Riemmanian manifold, and let Diff(M) be the space of diffeomorphisms of M endowed with the C^1 -topology. Denote by d the distance on M induced from a Riemannian metric $\|\cdot\|$ on the tangent bundle T_M . Let Λ be a closed f-invariant set. We say that Λ is *hyperbolic* if the tangent bundle $T_M M$ has a Df-invariant splitting $E^s \oplus E^u$ and there exist constants C > 0 and $0 < \lambda < 1$ such that

$$\|D_x f^n|_{E^s_x}\| \leqslant C \lambda^n \ \text{ and } \ \|D_x f^{-n}|_{E^u_x}\| \leqslant C \lambda^n$$

for all $x \in \Lambda$ and $n \ge 0$. If $\Lambda = M$, then we say that f is Anosov.

For any closed f-invariant set $\Lambda \subset M$, we say that Λ is *expansive* for f, if there is e > 0 such that for any $x, y \in \Lambda$ if $d(f^n(x), f^n(y)) \leq e$ then x = y. Equivalently, Λ is expansive for f if there is e > 0 such that

Email address: lmsds@mokwon.ac.kr (Manseob Lee)

doi: 10.22436/jmcs.018.02.02

Received 2017-09-16

 $\Gamma_e^f(x)=\{x\}$ for all $x\in\Lambda$, where $\Gamma_e^f(x)=\{y\in\Lambda:d(f^i(x),f^i(y))\leqslant e$ for all $i\in\mathbb{Z}\}$. Let $\mathfrak{M}(M)$ be the set of all Borel probability measures on M endowed with the weak* topology, and let $\mathfrak{M}^*(M)$ be the set of nonatomic measures $\mu\in\mathcal{M}(M)$. For any $\mu\in\mathcal{M}^*(M)$, we say that Λ is μ -expansive for f if $\mu(\Gamma_e^f(x))=0$. Λ is said to be measure expansive for f if Λ is μ -expansive for all $\mu\in\mathcal{M}^*(M)$; that is, there is a constant e>0 such that for any $\mu\in\mathcal{M}^*(M)$ and $x\in\Lambda$, $\mu(\Gamma_e^f(x))=0$. Here e is called a measure expansive constant of $f|_{\Lambda}$. Clearly, the expansiveness implies the measure expansiveness, but the converse does not hold in general (see [14, Theorem 1.35]). We say that f is quasi-Anosov if for any $\nu\in TM\setminus\{0\}$, the set $\{\|Df^n(\nu)\|:n\in\mathbb{Z}\}$ is unbounded. Sakai et al. [19] proved that for C^1 generic f, if f is measure expansive then it is Axiom A without cycles. It is well known that if g is a hyperbolic periodic point of g with period g then the sets

$$W^{s}(\mathfrak{p}) = \{ x \in M : f^{\pi(\mathfrak{p})\mathfrak{n}}(x) \to \mathfrak{p} \text{ as } \mathfrak{n} \to \infty \}$$

and

$$W^{\mathfrak{u}}(\mathfrak{p}) = \{ \mathfrak{x} \in M : f^{-\pi(\mathfrak{p})\mathfrak{n}}(\mathfrak{x}) \to \mathfrak{p} \text{ as } \mathfrak{n} \to \infty \}$$

are C^1 -injectively immersed submanifolds of M. A point $x \in W^s(\mathfrak{p}) \cap W^u(\mathfrak{p})$ is called a *homoclinic point* of f associated to \mathfrak{p} . The closure of the homoclinic points of f associated to \mathfrak{p} is called the *homoclinic class* of f associated to \mathfrak{p} , and it is denoted by $H_f(\mathfrak{p})$. It is clear that $H_f(\mathfrak{p})$ is compact, transitive, and invariant.

Denote by P(f) the set of all periodic points of f. Let q be a hyperbolic periodic point of f. We say that p and q are *homoclinically related*, and write $p \sim q$ if

$$W^{s}(\mathfrak{p}) \cap W^{\mathfrak{u}}(\mathfrak{q}) \neq \emptyset$$
 and $W^{\mathfrak{u}}(\mathfrak{p}) \cap W^{s}(\mathfrak{q}) \neq \emptyset$.

It is clear that if $p \sim q$ then index(p) = index(q), that is, $dimW^s(p) = dimW^s(q)$. By the Smale's transverse homoclinic point theorem, $H_f(p) = \overline{\{q \in P_h(f) : q \sim p\}}$, where \overline{A} is the closure of the set A and $P_h(f)$ is the set of all hyperbolic periodic points. Note that if p is a hyperbolic periodic point of f then there is a neighborhood f of f such that for any f is considered as f in f there exists a unique hyperbolic periodic point f is f of f such that for any f is called the *continuation* of f is an eighborhood f is a neighborhood f is called the *continuation* of f is an eighborhood f is an eighborhood f of f such that f is a neighborhood f is an eighborhood f of f such that f is a neighborhood f is an eighborhood f of f such that f is an eighborhood f is an eighborhood f of f such that f is an eighborhood f is an eighborhood f is an eighborhood f in f is an eighborhood f is an eighborhood f in f in

In differentiable dynamical systems, a main research topic is to study that for a given system, if the system has a property then we consider that a system which is C^1 -nearby system has the same property. Then, we consider various type of C^1 -perturbation property on a closed invariant set which are the following.

- (a) We say that $H_f(p)$ is C^1 robustly $\mathfrak P$ property if there is a C^1 -neighborhood $\mathfrak U(f)$ of f such that for any $g \in \mathfrak U(f)$, $H_g(p_g)$ is $\mathfrak P$ property. If $\mathfrak P$ is expansive then the expansive constant is uniform, which means that the constant only depends on f (see [15, 16]).
- (b) We say that $H_f(p)$ is C^1 persistently $\mathfrak P$ property if there is a C^1 -neighborhood $\mathfrak U(f)$ of f such that for any $g \in \mathfrak U(f)$, $H_g(p_g)$ is $\mathfrak P$ property. If $\mathfrak P$ is expansive then the expansive constant is not uniform which means that the constant depends on $g \in \mathfrak U(f)$ (see [20]).
- (c) We say that $H_f(p)$ is C^1 stably \mathfrak{P} property if there are a C^1 -neighborhood $\mathfrak{U}(f)$ of f and a neighborhood $\mathfrak{U}(f)$ of \mathfrak{P} such that for any $g \in \mathfrak{U}(f)$, $\Lambda_g(\mathfrak{U})$ is \mathfrak{P} property, where $\Lambda_g(\mathfrak{U}) = \bigcap_{\mathfrak{n} \in \mathbb{Z}} g^{\mathfrak{n}}(\mathfrak{U})$ is the continuation of $H_f(p)$. If \mathfrak{P} is expansive, then the expansive constant is not uniform which means that the constant depends on $g \in \mathfrak{U}(f)$ (see [8]).

In the item (c), we can also consider a closed invariant set. We say that a subset $\mathcal{G} \subset \text{Diff}(M)$ is *residual* if \mathcal{G} contains the intersection of a countable family of open and dense subsets of Diff(M); in this case \mathcal{G} is dense in Diff(M). A property \mathcal{P} is said to be (C^1) -generic if \mathcal{P} holds for all diffeomorphisms which belong to some residual subset of Diff(M).

Li [10] introduced another C^1 robust property which is called *R-robustly* \mathfrak{P} *property*. Using to the notion, we consider the following.

Definition 1.1. Let the homoclinic class $H_f(p)$ associated to a hyperbolic periodic point p. We say that $H_f(p)$ is *R-robustly measure expansive* if there are a C^1 -neighborhood U(f) of f and a residual set G of U(f) such that for any $g \in G$, $H_g(p_g)$ is measure expansive, where p_g is the continuation of p.

Recently, Pacificao and Vieites [17] proved that a diffeomorphism f in a residual subset far from homoclinic tangencies are measure expansive. Lee and Lee [9] proved that if the homoclinic class $H_f(p)$ is C^1 stably measure expansive then it is hyperbolic. Koo et al. [6] proved that for C^1 generic f, if a locally maximal homoclinic class $H_f(p)$ is measure expansive, then it is hyperbolic. Owing to the result, we have the following which is a main theorem of the paper.

Theorem 1.2. Let the homoclinic class $H_f(p)$ associated to a hyperbolic periodic point p. If $H_f(p)$ is R-robustly measure expansive then it is hyperbolic.

2. Dominated splitting and Hyperbolic periodic points in $H_f(p)$

Let M be as before, and let $f \in Diff(M)$. A *periodic point* for f is a point $p \in M$ such that $f^{\pi(p)}(p) = p$, where $\pi(p)$ is the minimum period of p. Denote by P(f) the set of all periodic points of f. For given $x,y \in M$, we write $x \to y$ if for any $\delta > 0$, there is a δ -pseudo orbit $\{x_i\}_{i=0}^n (n > 1)$ of f such that $x_0 = x$ and $x_n = y$. We write $x \leftrightarrow y$ if $x \to y$ and $y \to x$. The set of points $\{x \in M : x \leftrightarrow x\}$ is called the *chain recurrent set* of f and is denoted by $\Re(f)$. It is clear that $P(f) \subset \Re(f) \subset \Re(f)$. Here $\Re(f)$ is the non-wandering set of f. Let f be a hyperbolic periodic point of f. We say that the *chain component* if for any f and f and denote it by f by f by f and f and denote it by f by f by f be an equivalent class, it is a closed set and f-invariant set. The following was proved by Bonatti and Crovisier [2].

Remark 2.1. There is a residual set $\mathcal{G}_1 \subset \text{Diff}(M)$ such that for any $f \in \mathcal{G}_1$, $H_g(\mathfrak{p}) = C_f(\mathfrak{p})$ for some hyperbolic periodic point \mathfrak{p} .

Proposition 2.2. Let the homoclinic class $H_f(p)$ be R-robustly measure expansive. If $x \in W^s(p) \cap W^u(p)$, then $x \in W^s(p) \cap W^u(p)$.

Proof. Since $H_f(p)$ is R-robustly measure expansive, there exists a C^1 -neighborhood $\mathcal{U}(f)$ and a residual set $\mathcal{G} \subset \mathcal{U}(f)$ such that for any $g \in \mathcal{G}$, $H_g(p_g)$ is measure expansive. Let $\mathcal{G} = \mathcal{G}_1$. Since $x \in W^s(p) \cap W^u(p)$, by [17, Proposition 2.6], there is $g \in \mathcal{U}(f) \cap \mathcal{G}$ such that we can make a small arc $\mathcal{J} \subset W^s(p_g) \cap W^u(p_g)$. Since $H_g(p_g) = C_g(p_g)$, we know $\mathcal{J} \subset C_g(p_g)$. Let $diam(\mathcal{J}) = l$. We define a measure $\mu \in \mathcal{M}^*(M)$ by $\mu(C) = \nu(C \cap \mathcal{J})$ for any Borel set C of M, where ν is a normalized Lebesgue measure on \mathcal{J} . Let e = l/4 be a measure expansive constant. Since $\mathcal{J} \subset W^s(p_g) \cap W^u(p_g)$, there is N > 0 such that $diam(g^i(\mathcal{J})) \leqslant e/4$ for $-N \leqslant i \leqslant N$, and $g^i(\mathcal{J}) \subset W^s_{e/4}(p_g) \cap W^u_{e/4}(p_g)$ for |i| > N. Thus for all $i \in \mathbb{Z}$, we know that $diam(g^i(\mathcal{J})) \leqslant e$. Recall that

$$\Gamma_e(x) = \{y \in H_g(p_g) : d(g^i(x), g^i(y)) \leqslant e \text{ for } i \in \mathbb{Z}\}.$$

We can construct the set

$$A_e(x) = \{y \in \mathcal{J} : d(g^i(x), g^i(y)) \leqslant e \text{ for } i \in \mathbb{Z}\}.$$

Then we know $A_e(x) \subset \Gamma_e(x)$. Thus we have

$$0 < \mu(A_e(x)) \leq \mu(\Gamma_e(x)),$$

which is a contradiction to the measure expansivity of $H_q(p_q)$.

For $f \in Diff(M)$, we say that a compact f-invariant set Λ admits a dominated splitting if the tangent bundle $T_{\Lambda}M$ has a continuous Df-invariant splitting $E \oplus F$ and there exist C > 0, $0 < \lambda < 1$ such that for all $x \in \Lambda$ and $n \geqslant 0$, we have

$$\|Df^n|_{E(x)}\|\cdot\|Df^{-n}|_{F(f^n(x))}\|\leqslant C\lambda^n.$$

Theorem 2.3. Let $H_f(p)$ be the homoclinic class containing a hyperbolic periodic point p. Suppose that $H_f(p)$ is R-robustly measure expansive. Then there exist a C^1 -neighborhood U(f) of f and a residual set $G \subset U(f)$ such that for any $g \in G$, $H_g(p_g)$ admits a dominated splitting $T_{H_g(p_g)}M = E(g) \oplus F(g)$ with index $(p_g) = \dim E(g)$.

Proof. Suppose that $H_f(p)$ is R-robustly measure expansive. Then as in the proof of [20, Theorem 1], there is m>0 such that for every $x\in W^s(p) \pitchfork W^u(p)$ there exists $m_1\in [90,m]$ such that $\|Df^{m_1}|_{E(x)}\|\cdot\|Df^{-m_1}|_{E(f^{m_1}(x))}\| \le 1/2$. Since the dominated splitting can be extended by continuity to the

$$\overline{W^{s}(\mathfrak{p}) \pitchfork W^{u}(\mathfrak{p})} = \mathsf{H}_{\mathsf{f}}(\mathfrak{p}),$$

we have that $H_f(p)$ has a dominated splitting $E \oplus F$.

Theorem 2.4. Let the homoclinic class $H_f(p)$ be R-robustly measure expansive. Then there exist $C > 0, 0 < \lambda < 1$ and m > 0 such that q is a hyperbolic periodic point of period $\pi(q)$ and $q \sim p$, then

$$\prod_{i=0}^{k-1} \|Df^m|_{E^s(f^{i\mathfrak{m}}(\mathfrak{q}))}\| < C\lambda^k \text{ and } \prod_{i=0}^{k-1} \|Df^{-\mathfrak{m}}|_{E^\mathfrak{u}(f^{-i\mathfrak{m}}(\mathfrak{q}))}\| < C\lambda^k,$$

where $k = [\pi(q)/m]([\cdot]$ represents the integer part).

Proof. Since $H_f(p)$ is R-robustly measure expansive, there are a C^1 -neighborhood $\mathcal{U}(f)$ and a residual set $\mathcal{G} \subset \mathcal{U}(f)$ such that for any $g \in \mathcal{G}$, $H_g(p_g)$ is measure expansive. Let $\mathcal{G} = \mathcal{G}_1$. Since $q \in H_f(p)$ and $p \sim q$, as in the proof of [20], it is enough to show that the family of periodic sequences of linear isomorphisms of \mathbb{R}^n generated by Df along the hyperbolic periodic points $q \in H_f(p)$, $q \sim p$ and index(p) = index(q) is uniformly hyperbolic. Suppose, by contradiction, that the assume does not hold. Then as in the proof of [18, Theorem B], we may assume that a hyperbolic periodic point $q \in H_f(p)$ such that the weakest normalized eigenvalue λ is close to 1. Then by Franks lemma, there is $g \in \mathcal{G}$ such that for any small $\gamma > 0$ we can construct a closed small curve \mathcal{I}_q containing q or a closed small circle \mathcal{C}_q centered at q such that $\mathcal{I}_q \subset C_g(p_g)$ and two endpoints are related to p_g and $\mathcal{C}_q \subset C_g(p_g)$. Note that \mathcal{I}_q and \mathcal{C}_q are $g^{\pi(q)}$ -invariant, normally hyperbolic, and $g^{1\pi(q)}|_{\mathcal{I}_q}$ is the identity map for some l > 0 (see [18]). For \mathcal{I}_q , we define a measure $\mu \in \mathcal{M}^*(M)$ by

$$\mu(C) = \frac{1}{l\pi(q)} \sum_{i=0}^{l\pi(q)-1} \nu(g^{-i}(C \cap g^i(\mathbb{I}_q)))$$

for any Borel set C of M, where ν is a normalized Lebesgue measure on \mathfrak{I}_q . Let $\gamma\leqslant e$ be a measure expansive constant of $g|_{H_g(\mathfrak{p}_g)}$. By [14, Proposition], g is measure expansive if and only if g^n is measure expansive for $n\in\mathbb{Z}\setminus\{0\}$. Let $\Gamma_e^g(x)=\{y\in H_g(\mathfrak{p}_g):d(g^{l\pi(\mathfrak{q})\mathfrak{i}}(x),g^{l\pi(\mathfrak{q})\mathfrak{i}}(y))\leqslant e$, for all $\mathfrak{i}\in\mathbb{Z}\}$. Then we have

$$\left\{y\in \mathfrak{I}_q: d(g^{l\pi(q)\mathfrak{i}}(x),g^{l\pi(q)\mathfrak{i}}(y))\leqslant e \text{ for all } \mathfrak{i}\in \mathbb{Z}\right\}=\left\{y\in \mathfrak{I}_q: d(g^{\mathfrak{i}}(x),g^{\mathfrak{i}}(y))\leqslant e \text{ for all } \mathfrak{i}\in \mathbb{Z}\right\}.$$

Thus we know

$$0<\mu(\{y\in \mathfrak{I}_q: d(g^{\mathfrak{i}}(x), g^{\mathfrak{i}}(y))\leqslant e \text{ for all } \mathfrak{i}\in \mathbb{Z}\})\leqslant \mu(\Gamma_e^g(x)).$$

Since $H_g(p_g)$ is measure expansive for g, we know $\mu(\Gamma_e^g(x))=0$. Thus we have

$$\mu(\{y\in \mathfrak{I}_{\mathbf{q}}:d(g^{\mathfrak{i}}(x),g^{\mathfrak{i}}(y))\leqslant e \text{ for all }\mathfrak{i}\in \mathbb{Z}\})=0.$$

This is a contradiction.

For \mathfrak{C}_q case, if \mathfrak{C}_q is irrational rotation then using the Franks' lemma, there is $h \in \mathfrak{U}(g) \cap \mathfrak{G}$ such that \mathfrak{C}_{q_h} is rational rotation which is centered at q_h , where $\mathfrak{U}(g)$ is a C^1 -neighborhood of g, and q_h is the

continuation of q for h. Then there is k>0 such that $h^k: \mathfrak{C}_{\mathfrak{q}_h} \to \mathfrak{C}_{\mathfrak{q}_h}$ is the identity map. Then we define a measure $\mu \in \mathfrak{M}^*(M)$ by

$$\mu(B) = \frac{1}{k} \sum_{i=0}^{k-1} \eta(h^{i}(B \cap h^{-i}(\mathcal{C}_{q_{h}}))$$

for any Borel set B of M, where η is a normalized Lebesgue measure on \mathcal{C}_{q_h} . Then as in the proof of previous argument, we can derive a contradiction.

By [14, Proposition], g is measure expansive if and only if g^n is measure expansive for $n \in \mathbb{Z} \setminus \{0\}$. Theorem 2.4 can be rewritten as the following.

Theorem 2.5. Let the homoclinic class $H_f(p)$ be R-robustly measure expansive. Then there exist $0 < \lambda < 1$ and $L \le 1$ such that q is a hyperbolic periodic point of period $\pi(q)$ with $L > \pi(q)$ and $q \sim p$, then

$$\prod_{i=0}^{\pi(q)-1} \|Df|_{E^{\mathfrak{s}}(f^{i}(\mathfrak{q}))}\| < \lambda^{\pi(\mathfrak{q})} \text{ and } \prod_{i=0}^{\pi(\mathfrak{q})-1} \|Df^{-1}|_{E^{\mathfrak{u}}(f^{-i}(\mathfrak{q}))}\| < \lambda^{\pi(\mathfrak{q})}.$$

3. Local product structure

Let Λ be a closed, f-invariant set. We say that Λ has a *local product structure* if for given $\varepsilon > 0$ there exists a $\delta > 0$ such that if $d(x,y) < \delta$ and $x,y \in \Lambda$, then

$$\emptyset \neq W^{s}_{\epsilon}(x) \cap W^{\mathfrak{u}}_{\epsilon}(y) \subset \Lambda.$$

By the uniqueness of the dominated splitting, if $q \in H_f(p)$ is a periodic point with $q \sim p$ then we have $E(q) = E^s(q)$ and $F(q) = E^u(q)$. Let dimE = s and by dimF = u, and put $D^j_r = \{x \in \mathbb{R}^j : \|x\| \leqslant r\}$ (r > 0), for j = s, u. Let $Emb_{\Lambda}(D^j_1, M)$ be the space of C^1 embeddings $\beta : D^j_1 \to M$ such that $\beta(0) \in \Lambda$ endowed with the C^1 topology. Then we have the following.

Proposition 3.1 ([4, 12]). Let $H_f(p)$ be the homoclinic class of f associated to a hyperbolic periodic point p, and let $\Lambda = H_f(p)$. Suppose that Λ has a dominated splitting $E \oplus F$. Then there exist sections $\varphi^s : \Lambda \to \operatorname{Emb}_{\Lambda}(D_1^s, M)$ and $\varphi^u : \Lambda \to \operatorname{Emb}_{\Lambda}(D_1^u, M)$ such that by defining $W_{\varepsilon}^{cs}(x) = \varphi^s(x)D_{\varepsilon}^s$ and $W_{\varepsilon}^{cu}(x) = \varphi^u(x)D_{\varepsilon}^u$, for each $x \in \Lambda$, we have

- (1) $T_x W_{\epsilon}^{cs}(x) = E(x)$ and $T_x W_{\epsilon}^{cu}(x) = F(x)$;
- (2) for every $0 < \varepsilon_1 < 1$ there exists $0 < \varepsilon_2 < 1$ such that $f(W^{cs}_{\varepsilon_2}(x)) \subset W^{cs}_{\varepsilon_1}(f(x))$ and $f^{-1}(W^{cu}_{\varepsilon_2}(x)) \subset W^{cs}_{\varepsilon_1}(f^{-1}(x))$;
- (3) for every $0 < \varepsilon_1 < 1$ there exists $0 < \delta < 1$ such that if $d(x,y) < \delta$ $(x,y \in \Lambda)$ then $W^{cs}_{\varepsilon_1}(x) \cap W^{cu}_{\varepsilon_1}(y) \neq \emptyset$, and this intersection is transverse.

The sets $W_{\epsilon}^{cs}(x)$ and $W_{\epsilon}^{cu}(x)$ are called the *local center stable* and *local unstable manifolds* of x, respectively. The following lemma can be proved similarly to that of Lemma 4 in [20].

Lemma 3.2. Let $H_f(p)$ be the homoclinic class of f associated to a hyperbolic periodic point p, and suppose that $H_f(p)$ is R-robustly measure expansive. Then for C, λ as in Theorem 3.1 and $\delta > 0$ satisfying $\lambda' = \lambda(1+\delta) < 1$ and $q \sim p$, there exists $0 < \varepsilon_1 < \varepsilon$ such that if for all $0 \le n \le \pi(q)$ it holds that for some $\varepsilon_2 > 0$, $f^n(W^{cs}_{\varepsilon_2}(q)) \subset W^{cs}_{\varepsilon_1}(f^n(q))$, then

$$f^{\pi(\mathfrak{q})}(W^{cs}_{\varepsilon_2}(\mathfrak{q}))\subset W^{cs}_{C\lambda'^{\pi(\mathfrak{q})}\varepsilon_2}(\mathfrak{q}).$$

Similarly, if $f^{-n}(W^{cu}_{\varepsilon_2}(q)) \subset W^{cu}_{\varepsilon_1}(f^{-n}(q))$, then

$$f^{-\pi(\mathfrak{q})}(W^{c\mathfrak{u}}_{\varepsilon_2}(\mathfrak{q}))\subset W^{c\mathfrak{u}}_{C\lambda'^{\pi(\mathfrak{q})}\varepsilon_2}(\mathfrak{q}).$$

Recall that by using the Smale's transverse theorem, we have $H_f(p) = \overline{homo}_p$, where $homo_p = \{q \in P_h(f) : q \sim p\}$.

Lemma 3.3. Let $H_f(p)$ be the homoclinic class of f associated to a hyperbolic periodic point p, and let e > 0 be a measure expansive constant. Suppose that $H_f(p)$ is R-robustly measure expansive. Then

(a) for any hyperbolic periodic point $q \in homo_p$ and $0 < \varepsilon_1 < e$, there is $\varepsilon_2 > 0$ such that

$$f^n(W^{c\,s}_{\varepsilon_2}(q))\subset W^{c\,s}_{\varepsilon_1}(f^n(q)) \text{ and } f^{-n}(W^{c\,u}_{\varepsilon_2}(q))\subset W^{c\,u}_{\varepsilon_1}(f^{-n}(q)) \text{ for all } n\geqslant 0.$$

(b) for any $y \in W^{c\,s}_{\varepsilon_2}(q)$ and $q \in homo_p$ we have

$$\lim_{n\to\infty} d(f^n(q), f^n(y)) = 0.$$

Proof. Let $f \in \mathcal{G} = \mathcal{G}_1$ and let $H_f(p)$ is R-robustly measure expansive. To prove (a), it is enough to show that $f^n(W^{cs}_{\varepsilon_2}(q)) \subset W^{cs}_{\varepsilon_1}(f^n(q))$. Let $\sup\{dimW^{cs}_{\varepsilon_1}(q): q \in homo_p\} < e$. Since $q \in homo_p$, we define

$$\varepsilon(\mathfrak{q})=sup\{\varepsilon>0:f^{\mathfrak{n}}(W^{c\,s}_{\varepsilon}(\mathfrak{q}))\subset W^{c\,s}_{\varepsilon_1}(f^{\mathfrak{n}}(\mathfrak{q}))\text{ for all }\mathfrak{n}\geqslant 0\}.$$

By Proposition 3.1 and Lemma 3.2, $\varepsilon(q)>0$. Let $\varepsilon_0=\inf\{\varepsilon(q):q\in homo_p\}$. If $\varepsilon_0>0$ then it is a proof of (a). Suppose, by contradiction, that there is a sequence $\{q_n\}\subset homo_p$ such that $\varepsilon(q_n)\to 0$ as $n\to\infty$. Then we have $0< m_n<\pi(q_n)$ and $y_n\in W^{c\,s}_{\varepsilon(q_n)}(q_n)$ such that $d(f^{m_n}(q_n),f^{m_n}(y_n))=\varepsilon_1$ for $f^{m_n}(q_n),f^{m_n}(y_n)\in W^{c\,s}_{\varepsilon(q_n)}(q_n)$. Let I_n be a closed connected arc joining $f^{m_n}(q_n)$ with $f^{m_n}(y_n)$. Then we know that

- (i) $I_n \subset W^{cs}_{\epsilon(\mathfrak{q}_n)}(\mathfrak{q}_n)$;
- (ii) $f^{i}(I_{n}) \subset W^{cs}_{\varepsilon_{1}}(f^{i}(q_{n}))$ for $0 \leq i \leq \pi(q_{n})$;
- (iii) $diam(I_n) = \epsilon_1$.

By Lemma 3.2, we know $f^{\pi(q_n)}(W^{cs}_{\varepsilon(q_n)}(q_n)) \subset W^{cs}_{C\lambda'\pi(q_n)}(q_n)$. Observe that if $n \to \infty$ then $m_n \to \infty$ and $\pi(q_n) - m_n \to \infty$. Suppose that $f^{m_n}(q_n) \to x$ and $f^{m_n}(y_n) \to y$ as $n \to \infty$. Then $I_n \to I$, where I is a close connected arc joining x with y. It means that $diam(f^j(I)) \leqslant \varepsilon_1$ for all $j \in \mathbb{Z}$, and $x \in \overline{homo_p} = H_f(p)$. We show that the closed connected arc $I \subset H_f(p)$. Since $f \in \mathcal{G}$, $H_f(p) = C_f(p)$. For any $a \in I$, take $a_n \in W^{cs}_{\varepsilon(q_n)}(q_n)$ such that $f^{m_n}(a_n) \to a$ as $n \to \infty$. As in the proof of [21, Lemma 2.6], let $\varepsilon > 0$ be arbitrary. Let $n \in \mathbb{N}$ be such that $\varepsilon(q_n) < \varepsilon$. Then for n sufficiently large, $\{q_n, f(a_n), \dots, f^{m_n-1}(a_n), a, f^{m_n+1}(a_n), \dots, f^{\pi(q_n)-1}(a_n), q_n\}$ is a periodic ε -chain through a and having a point in $H_f(p)$. Since $q_n \in homo_p$, $H_f(q_n) = H_f(p) = C_f(q_n) = C_f(p)$ and so the closed connected arc $I \subset H_f(p)$. We define a measure $\mu \in \mathcal{M}^*(M)$ by $\mu(C) = \mu_I(C \cap I)$ for any Borel set C of M, where μ_I is a normalized Lebesgue measure on I. Let

$$\Gamma_e(x) = \{y \in H_f(p) : d(f^i(x), f^i(y)) \leqslant e \text{ for } i \in \mathbb{Z}\}.$$

Since for all $i \in \mathbb{Z}$, diam $(f^{i}(I)) \leq e$, we can construct the set

$$\{y \in I : d(f^{i}(x), f^{i}(y)) \leqslant e \text{ for } i \in \mathbb{Z}\}.$$

Then we know $\{y \in I : d(f^i(x), f^i(y)) \le e \text{ for } i \in \mathbb{Z}\} \subset \Gamma_e(x)$. Thus we have

$$0<\mu(\{y\in I:d(f^i(x),f^i(y))\leqslant e \text{ for } i\in \mathbb{Z}\})\leqslant \mu(\Gamma_e(x)).$$

Since $H_f(p)$ is measure expansive, $\mu(\Gamma_e(x))=0$. Thus $\mu(\{y\in I:d(f^i(x),f^i(y))\leqslant e \text{ for } i\in \mathbb{Z}\})=0$ which is a contradiction.

The proof of (b) is similar as in the proof of item (b) of [21, Lemma 2.6].

Remark 3.4. In the Lemma 3.3, we consider $q \in \text{homo}_p$. Then we can extend $x \in H_f(p)$, that is, for any $x \in H_f(p)$ and $\varepsilon_1 > 0$ there exists $\varepsilon_2 > 0$ such that $f^n(W^{cs}_{\varepsilon_2}(x)) \subset W^{cs}_{\varepsilon_1}(f^n(x))$ for all $n \ge 0$. And if $z \in W^{cs}_{\varepsilon_2}(x)$ and $z \in H_f(p)$, then $d(f^i(z), f^i(x)) \to 0$ as $n \to \infty$.

Proposition 3.5. Suppose that the homoclinic class $H_f(p)$ is R-robustly measure expansive. Then $H_f(p)$ has a local product structure.

Proof. By Lemma 3.3, there is $\epsilon_2 > 0$ such that for any $q \in homo_p$

$$W^{\operatorname{cs}}_{\varepsilon_2}({\mathfrak q})=W^{\operatorname{s}}_{\varepsilon_2}({\mathfrak q}) \text{ and } W^{\operatorname{cu}}_{\varepsilon_2}({\mathfrak q})=W^{\operatorname{u}}_{\varepsilon_2}({\mathfrak q}).$$

By Proposition 3.1 (3), there is $\delta > 0$ such that for any $q, r \in homo_p$,

$$W_{\epsilon_2}^{s}(\mathfrak{q}) \cap W_{\epsilon_2}^{\mathfrak{u}}(\mathfrak{r}) \neq \emptyset.$$

By λ -lemma, $W^s_{\epsilon_2}(\mathfrak{q}) \subset \overline{W^s(\mathfrak{p})}$ and $W^\mathfrak{u}_{\epsilon_2}(\mathfrak{r}) \subset \overline{W^\mathfrak{u}(\mathfrak{p})}$. Thus we know that $W^s_{\epsilon_2}(\mathfrak{q}) \cap W^\mathfrak{u}_{\epsilon_2}(\mathfrak{r}) \subset H_f(\mathfrak{p})$. This means that $H_f(\mathfrak{p})$ has a local product structure.

Corollary 3.6. Suppose that the homoclinic class $H_f(p)$ is R-robustly measure expansive. Then for any hyperbolic periodic point $q \in H_f(p)$, index(p) = index(q).

Proof. The proof is directly obtained by Proposition 3.1 (3), Lemma 3.3, and Proposition 3.5. Thus for any hyperbolic periodic point $q \in H_f(p)$,

$$W^{s}(\mathfrak{p}) \cap W^{\mathfrak{u}}(\mathfrak{q}) \neq \emptyset$$
 and $W^{\mathfrak{u}}(\mathfrak{p}) \cap W^{s}(\mathfrak{q}) \neq \emptyset$.

Thus we have index(p) = index(q).

4. Proof of Theorem 1.2

For any $\delta > 0$, a sequence $\{x_i\}_{i \in \mathbb{Z}}$ is a δ -pseudo orbit of f if $d(f(x_i), x_{i+1}) < \delta$ for all $i \in \mathbb{Z}$. Let Λ be a closed f-invariant set. We say that f has the *shadowing property* on Λ such that for any $\epsilon > 0$ there is $\delta > 0$ such that for any δ -pseudo orbit $\{x_i\}_{i \in \mathbb{Z}} \subset \Lambda$ there is $z \in M$ such that $d(f^i(z), x_i) < \epsilon$ for all $i \in \mathbb{Z}$. The following proposition is a very useful result for proving of Theorem 1.2.

Proposition 4.1 ([23, Proposition 3.3]). Let p be a hyperbolic periodic point, and let $H_f(p)$ be the homoclinic class of f containing p. Let $0 < \lambda < 1$ and $L \ge 1$ be given. Assume that $H_f(p)$ satisfies the following properties.

(1) There is a continuous Df-invariant splitting $T_{H_f(p)}M = E \oplus F$ with dimE = index(p) such that for any $x \in H_f(p)$,

$$\|Df|_{E(x)}\|/m(Df|_{F(x)}) < \lambda^2$$
,

where $m(A) = \inf |||A|| : ||v|| = 1$ } denotes the mininorm of a linear map A.

(2) For any $q \in H_f(p) \cap P(f)$, if q is hyperbolic and $\pi(q) > L$, then index(p) = index(q) and

$$\prod_{i=0}^{\pi(\mathfrak{q})-1}\|Df|_{E^{s}(f^{i}(\mathfrak{q}))}\|<\lambda^{\pi(\mathfrak{q})},\quad \prod_{i=0}^{\pi(\mathfrak{q})-1}\|Df^{-1}|_{E^{\mathfrak{u}}(f^{-i}(\mathfrak{q}))}\|<\lambda^{\pi(\mathfrak{q})}.$$

(3) f has the shadowing property on $H_f(p)$.

Then $H_f(p)$ is hyperbolic.

End of the Proof of Theorem 1.2. Since $H_f(p)$ is R-robustly measure expansive, by Theorems 2.3 and 2.5, propositions (1) and (2) hold. By Proposition 3.5 and Bowen's result [3, Proposition 3.6], if the homoclinic class $H_f(p)$ is R-robustly measure expansive then f has the shadowing property on $H_f(p)$, and so, proposition (3) also holds. Thus if $H_f(p)$ is R-robustly measure expansive then it is hyperbolic.

Acknowledgment

This work is supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (No. 2017R1A2B4001892).

References

- [1] A. Arbieto, Periodic orbits and expansiveness, Math. Z., 269 (2011), 801-807. 1
- [2] C. Bonatti, S. Crovisier, Récurrence et généricité, Invent. Math., 158 (2004), 33-104. 2
- [3] R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Springer-Verlag, Berlin, (2008). 4
- [4] M. W. Hirsch, C. C. Pugh, M. Shub, *Invariant manifolds*, Lecture Note in Math., Springer-Verlag, New York, (1977).
- [5] H. Kato, Continuum-wise expansive homeomorphisms, Canad. J. Math., 45 (1993), 576-598. 1
- [6] N. Koo, K. Lee, M. Lee, Generic diffeomorphisms with measure expansive homoclinic classes, J. Difference Equ. Appl., 20 (2014), 228–236. 1
- [7] M. Lee, Measure expansiveness of the generic view point, preprint. 1
- [8] K. Lee, M. Lee, Hyperbolicity of C¹-stably expansive homoclinic classes, Discrete Contin. Dyn. Syst., 27 (2010), 1133–1145. 1
- [9] K. Lee, M. Lee, Measure expansive homoclinic classes, Osaka J. Math., 53 (2016), 873-887. 1
- [10] X. Li, On R-robustly entropy-expansive diffeomorphisms, Bull. Braz. Math. Soc., 43 (2012), 73–98. 1
- [11] R. Mañē, Expansive diffeomorphisms, Lecture Notes in Math., Springer, Berlin, (1975). 1
- [12] R. Mañe, Contribution to stability conjecture, Topology, 17 (1978), 383-396. 3.1
- [13] C. Morales, A generalization of expansivity, Discrete Contin. Dyn. Syst., 32 (2012), 293–301. 1
- [14] C. A. Morales, V. F. Sirvent, *Expansive measures*, Instituto Nacional de Matemtica Pura e Aplicada (IMPA), Rio de Janeiro, (2013). 1, 2
- [15] M. J. Pacifico, E. R. Pujals, M. Sambarino, J. L. Vieites, Robustly expansive codimension-one homoclinic classes are hyperbolic, Ergodic Theory Dynam. Systems, 29 (2009), 179–200.
- [16] M. J. Pacifico, E. R. Pujals, J. L. Vieites, Robustly expansive homoclinic classes, Ergodic Theory Dynam. Systems, 25 (2005), 271–300. 1
- [17] M. J. Pacificao, J. L. Vieites, On measure expansive diffeomorphisms, Proc. Amer. Math. Soc., 143 (2015), 811–819. 1, 2
- [18] K. Sakai, C¹-stably shadowable chain components, Ergodic Theory Dynam. Systems, 28 (2008), 987–1029. 2
- [19] K. Sakai, N. Sumi, K. Yamamoto, Measure expansive diffeomorphisms, J. Math. Anal. Appl., 414 (2014), 546-552. 1
- [20] M. Sambarino, J. Vieitez, On C¹-persistently expansive homoclinic classes, Discrete Contin. Dynam. Syst., **14** (2006), 465–481. 1, 2, 2, 3
- [21] M. Sambarino, J. Vieitez, Robustly expansive homoclinic classes are generically hyperbolic, Discrete Contin. Dynam. Syst., 24 (2009), 1325–1333. 3
- [22] W. R. Utz, Unstable homeomorphisms, Proc. Amer. Math. Soc., 1 (1950), 769–774. 1
- [23] X. Wen, S. Gan, L. Wen, C¹-stably shadowable chain components are hyperbolic, J. Differential Equations, **246** (2009), 340–357. 4.1