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Abstract

Let f : M → M be a diffeomorphism on a closed smooth n(n > 2)-dimensional manifold M and let p be a hyperbolic
periodic point of f. We show that if the homoclinic class Hf(p) is R-robustly measure expansive then it is hyperbolic.
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1. Introduction

Roughly speaking, definition of expansiveness is, if two orbits are closed then they are one orbit which
was introduced by Utz [22]. A main research is to study structure of the orbits in differentiable dynamical
systems, and so a goal of differentiable dynamical system is to study stability properties (Anosov, Axiom
A, hyperbolic, structurally stable, etc.). Therefore, expansiveness is an important notion to study stability
properties. For instance, Mañé [11] proved that if a diffeomorphism is C1 robustly expansive then it is
quasi-Anosov. Arbieto [1] proved that for C1 generic an expansive diffeomorphism is Axiom A without
cycles. For expansivity, we can find various generalization notations, that is, continuum-wise expansive
[5], n-expansive [13], and measure expansive [14]. Among that, we study measure expansiveness in the
paper. Let M be a closed smooth n (n > 2)-dimensional Riemmanian manifold, and let Diff(M) be the
space of diffeomorphisms of M endowed with the C1-topology. Denote by d the distance on M induced
from a Riemannian metric ‖ · ‖ on the tangent bundle TM. Let Λ be a closed f-invariant set. We say that
Λ is hyperbolic if the tangent bundle TΛM has a Df-invariant splitting Es ⊕ Eu and there exist constants
C > 0 and 0 < λ < 1 such that

‖Dxfn|Esx‖ 6 Cλ
n and ‖Dxf−n|Eux ‖ 6 Cλ

n

for all x ∈ Λ and n > 0. If Λ =M, then we say that f is Anosov.
For any closed f-invariant set Λ ⊂ M, we say that Λ is expansive for f, if there is e > 0 such that for

any x,y ∈ Λ if d(fn(x), fn(y)) 6 e then x = y. Equivalently, Λ is expansive for f if there is e > 0 such that
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Γfe(x) = {x} for all x ∈ Λ, where Γfe(x) = {y ∈ Λ : d(fi(x), fi(y)) 6 e for all i ∈ Z}. Let M(M) be the set
of all Borel probability measures on M endowed with the weak∗ topology, and let M∗(M) be the set of
nonatomic measures µ ∈M(M). For any µ ∈M∗(M), we say that Λ is µ-expansive for f if µ(Γfe(x)) = 0. Λ
is said to be measure expansive for f if Λ is µ-expansive for all µ ∈M∗(M); that is, there is a constant e > 0
such that for any µ ∈M∗(M) and x ∈ Λ, µ(Γfe(x)) = 0. Here e is called a measure expansive constant of f|Λ.
Clearly, the expansiveness implies the measure expansiveness, but the converse does not hold in general
(see [14, Theorem 1.35]). We say that f is quasi-Anosov if for any v ∈ TM \ {0}, the set {‖Dfn(v)‖ : n ∈ Z} is
unbounded. Sakai et al. [19] proved that if a diffeomorphism f is C1 robustly measure expansive then it
is quasi-Anosov. Lee [7] proved that for C1 generic f, if f is measure expansive then it is Axiom A without
cycles. It is well known that if p is a hyperbolic periodic point of f with period π(p) then the sets

Ws(p) = {x ∈M : fπ(p)n(x)→ p as n→∞}

and
Wu(p) = {x ∈M : f−π(p)n(x)→ p as n→∞}

are C1-injectively immersed submanifolds of M. A point x ∈ Ws(p) t Wu(p) is called a homoclinic point
of f associated to p. The closure of the homoclinic points of f associated to p is called the homoclinic class
of f associated to p, and it is denoted by Hf(p). It is clear that Hf(p) is compact, transitive, and invariant.

Denote by P(f) the set of all periodic points of f. Let q be a hyperbolic periodic point of f. We say that
p and q are homoclinically related, and write p ∼ q if

Ws(p)tWu(q) 6= ∅ and Wu(p)tWs(q) 6= ∅.

It is clear that if p ∼ q then index(p) = index(q), that is, dimWs(p) = dimWs(q). By the Smale’s
transverse homoclinic point theorem, Hf(p) = {q ∈ Ph(f) : q ∼ p}, where A is the closure of the set A and
Ph(f) is the set of all hyperbolic periodic points. Note that if p is a hyperbolic periodic point of f then
there is a neighborhood U of p and a C1-neighborhood U(f) of f such that for any g ∈ U(f) there exists a
unique hyperbolic periodic point pg of g in U with the same period as p and index(pg) = index(p). Such
a point pg is called the continuation of p = pf. We say that Λ is locally maximal if there is a neighborhood
U of Λ such that Λ =

⋂
n∈Z f

n(U).
In differentiable dynamical systems, a main research topic is to study that for a given system, if the

system has a property then we consider that a system which is C1-nearby system has the same property.
Then, we consider various type of C1-perturbation property on a closed invariant set which are the
following.

(a) We say that Hf(p) is C1 robustly P property if there is a C1-neighborhood U(f) of f such that for any
g ∈ U(f), Hg(pg) is P property. If P is expansive then the expansive constant is uniform, which
means that the constant only depends on f (see [15, 16]).

(b) We say that Hf(p) is C1 persistently P property if there is a C1-neighborhood U(f) of f such that for
any g ∈ U(f), Hg(pg) is P property. If P is expansive then the expansive constant is not uniform
which means that the constant depends on g ∈ U(f) (see [20]).

(c) We say that Hf(p) is C1 stably P property if there are a C1-neighborhood U(f) of f and a neighborhood
U of Hf(p) such that for any g ∈ U(f), Λg(U) is P property, where Λg(U) =

⋂
n∈Z g

n(U) is the
continuation of Hf(p). If P is expansive, then the expansive constant is not uniform which means
that the constant depends on g ∈ U(f) (see [8]).

In the item (c), we can also consider a closed invariant set. We say that a subset G ⊂ Diff(M) is residual if
G contains the intersection of a countable family of open and dense subsets of Diff(M); in this case G is
dense in Diff(M). A property P is said to be (C1)-generic if P holds for all diffeomorphisms which belong
to some residual subset of Diff(M).

Li [10] introduced another C1 robust property which is called R-robustly P property. Using to the
notion, we consider the following.
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Definition 1.1. Let the homoclinic class Hf(p) associated to a hyperbolic periodic point p. We say that
Hf(p) is R-robustly measure expansive if there are a C1-neighborhood U(f) of f and a residual set G of U(f)
such that for any g ∈ G, Hg(pg) is measure expansive, where pg is the continuation of p.

Recently, Pacificao and Vieites [17] proved that a diffeomorphism f in a residual subset far from
homoclinic tangencies are measure expansive. Lee and Lee [9] proved that if the homoclinic class Hf(p)
is C1 stably measure expansive then it is hyperbolic. Koo et al. [6] proved that for C1 generic f, if a locally
maximal homoclinic class Hf(p) is measure expansive, then it is hyperbolic. Owing to the result, we have
the following which is a main theorem of the paper.

Theorem 1.2. Let the homoclinic class Hf(p) associated to a hyperbolic periodic point p. If Hf(p) is R-robustly
measure expansive then it is hyperbolic.

2. Dominated splitting and Hyperbolic periodic points in Hf(p)

Let M be as before, and let f ∈ Diff(M). A periodic point for f is a point p ∈M such that fπ(p)(p) = p,
where π(p) is the minimum period of p. Denote by P(f) the set of all periodic points of f. For given
x,y ∈M, we write x→ y if for any δ > 0, there is a δ-pseudo orbit {xi}ni=0(n > 1) of f such that x0 = x and
xn = y. We write x↔ y if x→ y and y→ x. The set of points {x ∈M : x↔ x} is called the chain recurrent
set of f and is denoted by R(f). It is clear that P(f) ⊂ Ω(f) ⊂ R(f). Here Ω(f) is the non-wandering set of
f. Let p be a hyperbolic periodic point of f. We say that the chain component if for any x ∈M, x → p and
p→ x and denote it by Cf(p). Note that the chain component Cf(p) of f is a equivalent class, it is a closed
set and f-invariant set. The following was proved by Bonatti and Crovisier [2].

Remark 2.1. There is a residual set G1 ⊂ Diff(M) such that for any f ∈ G1, Hg(p) = Cf(p) for some
hyperbolic periodic point p.

Proposition 2.2. Let the homoclinic class Hf(p) be R-robustly measure expansive. If x ∈ Ws(p) ∩Wu(p), then
x ∈Ws(p) tWu(p).

Proof. Since Hf(p) is R-robustly measure expansive, there exists a C1-neighborhood U(f) and a residual
set G ⊂ U(f) such that for any g ∈ G, Hg(pg) is measure expansive. Let G = G1. Since x ∈Ws(p)∩Wu(p),
by [17, Proposition 2.6], there is g ∈ U(f) ∩ G such that we can make a small arc J ⊂ Ws(pg) ∩Wu(pg).
Since Hg(pg) = Cg(pg), we know J ⊂ Cg(pg). Let diam(J) = l. We define a measure µ ∈ M∗(M) by
µ(C) = ν(C∩ J) for any Borel set C of M, where ν is a normalized Lebesgue measure on J. Let e = l/4 be
a measure expansive constant. Since J ⊂ Ws(pg) ∩Wu(pg), there is N > 0 such that diam(gi(J)) 6 e/4
for −N 6 i 6 N, and gi(J) ⊂ Ws

e/4(pg) ∩W
u
e/4(pg) for |i| > N. Thus for all i ∈ Z, we know that

diam(gi(J)) 6 e. Recall that

Γe(x) = {y ∈ Hg(pg) : d(gi(x),gi(y)) 6 e for i ∈ Z}.

We can construct the set
Ae(x) = {y ∈ J : d(gi(x),gi(y)) 6 e for i ∈ Z}.

Then we know Ae(x) ⊂ Γe(x). Thus we have

0 < µ(Ae(x)) 6 µ(Γe(x)),

which is a contradiction to the measure expansivity of Hg(pg).

For f ∈ Diff(M), we say that a compact f-invariant set Λ admits a dominated splitting if the tangent
bundle TΛM has a continuous Df-invariant splitting E⊕ F and there exist C > 0, 0 < λ < 1 such that for
all x ∈ Λ and n > 0, we have

||Dfn|E(x)|| · ||Df−n|F(fn(x))|| 6 Cλn.
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Theorem 2.3. Let Hf(p) be the homoclinic class containing a hyperbolic periodic point p. Suppose that Hf(p) is
R-robustly measure expansive. Then there exist a C1-neighborhood U(f) of f and a residual set G ⊂ U(f) such that
for any g ∈ G, Hg(pg) admits a dominated splitting THg(pg)M = E(g)⊕ F(g) with index(pg) = dimE(g).

Proof. Suppose that Hf(p) is R-robustly measure expansive. Then as in the proof of [20, Theorem 1],
there is m > 0 such that for every x ∈ Ws(p) t Wu(p) there exists m1 ∈ [90,m] such that ‖Dfm1 |E(x)‖ ·
‖Df−m1 |F(fm1(x))‖ 6 1/2. Since the dominated splitting can be extended by continuity to the

Ws(p) tWu(p) = Hf(p),

we have that Hf(p) has a dominated splitting E⊕ F.

Theorem 2.4. Let the homoclinic class Hf(p) be R-robustly measure expansive. Then there exist C > 0, 0 < λ < 1
and m > 0 such that q is a hyperbolic periodic point of period π(q) and q ∼ p, then

k−1∏
i=0

‖Dfm|Es(fim(q))‖ < Cλk and
k−1∏
i=0

‖Df−m|Eu(f−im(q))‖ < Cλk,

where k = [π(q)/m]([·] represents the integer part).

Proof. Since Hf(p) is R-robustly measure expansive, there are a C1-neighborhood U(f) and a residual set
G ⊂ U(f) such that for any g ∈ G, Hg(pg) is measure expansive. Let G = G1. Since q ∈ Hf(p) and p ∼ q,
as in the proof of [20], it is enough to show that the family of periodic sequences of linear isomorphisms
of Rn generated by Df along the hyperbolic periodic points q ∈ Hf(p),q ∼ p and index(p) = index(q)
is uniformly hyperbolic. Suppose, by contradiction, that the assume does not hold. Then as in the proof
of [18, Theorem B], we may assume that a hyperbolic periodic point q ∈ Hf(p) such that the weakest
normalized eigenvalue λ is close to 1. Then by Franks lemma, there is g ∈ G such that for any small
γ > 0 we can construct a closed small curve Iq containing q or a closed small circle Cq centered at q
such that Iq ⊂ Cg(pg) and two endpoints are related to pg and Cq ⊂ Cg(pg). Note that Iq and Cq are
gπ(q)-invariant, normally hyperbolic, and glπ(q)|Iq is the identity map for some l > 0 (see [18]). For Iq,
we define a measure µ ∈M∗(M) by

µ(C) =
1

lπ(q)

lπ(q)−1∑
i=0

ν(g−i(C∩ gi(Iq)))

for any Borel set C of M, where ν is a normalized Lebesgue measure on Iq. Let γ 6 e be a measure
expansive constant of g|Hg(pg). By [14, Proposition], g is measure expansive if and only if gn is measure
expansive for n ∈ Z \ {0}. Let Γge (x) = {y ∈ Hg(pg) : d(glπ(q)i(x),glπ(q)i(y)) 6 e, for all i ∈ Z}. Then we
have{

y ∈ Iq : d(glπ(q)i(x),glπ(q)i(y)) 6 e for all i ∈ Z
}
=
{
y ∈ Iq : d(gi(x),gi(y)) 6 e for all i ∈ Z

}
.

Thus we know
0 < µ({y ∈ Iq : d(gi(x),gi(y)) 6 e for all i ∈ Z}) 6 µ(Γge (x)).

Since Hg(pg) is measure expansive for g, we know µ(Γge (x)) = 0. Thus we have

µ({y ∈ Iq : d(gi(x),gi(y)) 6 e for all i ∈ Z}) = 0.

This is a contradiction.
For Cq case, if Cq is irrational rotation then using the Franks’ lemma, there is h ∈ U(g) ∩ G such that

Cqh is rational rotation which is centered at qh, where U(g) is a C1-neighborhood of g, and qh is the
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continuation of q for h. Then there is k > 0 such that hk : Cqh → Cqh is the identity map. Then we define
a measure µ ∈M∗(M) by

µ(B) =
1
k

k−1∑
i=0

η(hi(B∩ h−i(Cqh))

for any Borel set B of M, where η is a normalized Lebesgue measure on Cqh . Then as in the proof of
previous argument, we can derive a contradiction.

By [14, Proposition], g is measure expansive if and only if gn is measure expansive for n ∈ Z \ {0}.
Theorem 2.4 can be rewritten as the following.

Theorem 2.5. Let the homoclinic class Hf(p) be R-robustly measure expansive. Then there exist 0 < λ < 1 and
L 6 1 such that q is a hyperbolic periodic point of period π(q) with L > π(q) and q ∼ p, then

π(q)−1∏
i=0

‖Df|Es(fi(q))‖ < λπ(q) and
π(q)−1∏
i=0

‖Df−1|Eu(f−i(q))‖ < λπ(q).

3. Local product structure

Let Λ be a closed, f-invariant set. We say that Λ has a local product structure if for given ε > 0 there
exists a δ > 0 such that if d(x,y) < δ and x,y ∈ Λ, then

∅ 6=Ws
ε(x)∩Wu

ε (y) ⊂ Λ.

By the uniqueness of the dominated splitting, if q ∈ Hf(p) is a periodic point with q ∼ p then we have
E(q) = Es(q) and F(q) = Eu(q). Let dimE = s and by dimF = u, and put Djr = {x ∈ Rj : ‖x‖ 6 r} (r > 0),
for j = s,u. Let EmbΛ(D

j
1,M) be the space of C1 embeddings β : Dj1 → M such that β(0) ∈ Λ endowed

with the C1 topology. Then we have the following.

Proposition 3.1 ([4, 12]). Let Hf(p) be the homoclinic class of f associated to a hyperbolic periodic point p, and let
Λ = Hf(p). Suppose that Λ has a dominated splitting E⊕ F. Then there exist sections φs : Λ → EmbΛ(Ds1 ,M)
and φu : Λ → EmbΛ(Du1 ,M) such that by defining Wcs

ε (x) = φs(x)Dsε and Wcu
ε (x) = φu(x)Duε , for each

x ∈ Λ, we have

(1) TxWcs
ε (x) = E(x) and TxWcu

ε (x) = F(x);
(2) for every 0 < ε1 < 1 there exists 0 < ε2 < 1 such that f(Wcs

ε2
(x)) ⊂ Wcs

ε1
(f(x)) and f−1(Wcu

ε2
(x)) ⊂

Wcs
ε1
(f−1(x));

(3) for every 0 < ε1 < 1 there exists 0 < δ < 1 such that if d(x,y) < δ (x,y ∈ Λ) then Wcs
ε1
(x) ∩Wcu

ε1
(y) 6= ∅,

and this intersection is transverse.

The sets Wcs
ε (x) and Wcu

ε (x) are called the local center stable and local unstable manifolds of x, respec-
tively. The following lemma can be proved similarly to that of Lemma 4 in [20].

Lemma 3.2. Let Hf(p) be the homoclinic class of f associated to a hyperbolic periodic point p, and suppose that
Hf(p) is R-robustly measure expansive. Then for C, λ as in Theorem 3.1 and δ > 0 satisfying λ′ = λ(1 + δ) < 1
and q ∼ p, there exists 0 < ε1 < ε such that if for all 0 6 n 6 π(q) it holds that for some ε2 > 0, fn(Wcs

ε2
(q)) ⊂

Wcs
ε1
(fn(q)), then

fπ(q)(Wcs
ε2
(q)) ⊂Wcs

Cλ′π(q)ε2
(q).

Similarly, if f−n(Wcu
ε2

(q)) ⊂Wcu
ε1

(f−n(q)), then

f−π(q)(Wcu
ε2

(q)) ⊂Wcu
Cλ′π(q)ε2

(q).
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Recall that by using the Smale’s transverse theorem, we have Hf(p) = homop, where homop =
{q ∈ Ph(f) : q ∼ p}.

Lemma 3.3. Let Hf(p) be the homoclinic class of f associated to a hyperbolic periodic point p, and let e > 0 be a
measure expansive constant. Suppose that Hf(p) is R-robustly measure expansive. Then

(a) for any hyperbolic periodic point q ∈ homop and 0 < ε1 < e, there is ε2 > 0 such that

fn(Wcs
ε2
(q)) ⊂Wcs

ε1
(fn(q)) and f−n(Wcu

ε2
(q)) ⊂Wcu

ε1
(f−n(q)) for all n > 0.

(b) for any y ∈Wcs
ε2
(q) and q ∈ homop we have

lim
n→∞d(fn(q), fn(y)) = 0.

Proof. Let f ∈ G = G1 and let Hf(p) is R-robustly measure expansive. To prove (a), it is enough to show
that fn(Wcs

ε2
(q)) ⊂Wcs

ε1
(fn(q)). Let sup{dimWcs

ε1
(q) : q ∈ homop} < e. Since q ∈ homop, we define

ε(q) = sup{ε > 0 : fn(Wcs
ε (q)) ⊂Wcs

ε1
(fn(q)) for all n > 0}.

By Proposition 3.1 and Lemma 3.2, ε(q) > 0. Let ε0 = inf{ε(q) : q ∈ homop}. If ε0 > 0 then it is a
proof of (a). Suppose, by contradiction, that there is a sequence {qn} ⊂ homop such that ε(qn) → 0 as
n → ∞. Then we have 0 < mn < π(qn) and yn ∈ Wcs

ε(qn)
(qn) such that d(fmn(qn), fmn(yn)) = ε1 for

fmn(qn), fmn(yn) ∈ Wcs
ε(qn)

(qn). Let In be a closed connected arc joining fmn(qn) with fmn(yn). Then
we know that

(i) In ⊂Wcs
ε(qn)

(qn);

(ii) fi(In) ⊂Wcs
ε1
(fi(qn)) for 0 6 i 6 π(qn);

(iii) diam(In) = ε1.

By Lemma 3.2, we know fπ(qn)(Wcs
ε(qn)

(qn)) ⊂ Wcs
Cλ′π(qn)ε(qn)

(qn). Observe that if n → ∞ then mn →∞ and π(qn) −mn → ∞. Suppose that fmn(qn) → x and fmn(yn) → y as n → ∞. Then In → I,
where I is a close connected arc joining x with y. It means that diam(fj(I)) 6 ε1 for all j ∈ Z, and
x ∈ homop = Hf(p). We show that the closed connected arc I ⊂ Hf(p). Since f ∈ G, Hf(p) = Cf(p).
For any a ∈ I, take an ∈ Wcs

ε(qn)
(qn) such that fmn(an) → a as n → ∞. As in the proof of [21,

Lemma 2.6], let ε > 0 be arbitrary. Let n ∈ N be such that ε(qn) < ε. Then for n sufficiently large,
{qn, f(an), . . . , fmn−1(an),a, fmn+1(an), . . . , fπ(qn)−1(an),qn} is a periodic ε-chain through a and having
a point in Hf(p). Since qn ∈ homop, Hf(qn) = Hf(p) = Cf(qn) = Cf(p) and so the closed connected arc
I ⊂ Hf(p). We define a measure µ ∈ M∗(M) by µ(C) = µI(C ∩ I) for any Borel set C of M, where µI is a
normalized Lebesgue measure on I. Let

Γe(x) = {y ∈ Hf(p) : d(fi(x), fi(y)) 6 e for i ∈ Z}.

Since for all i ∈ Z, diam(fi(I)) 6 e, we can construct the set

{y ∈ I : d(fi(x), fi(y)) 6 e for i ∈ Z}.

Then we know {y ∈ I : d(fi(x), fi(y)) 6 e for i ∈ Z} ⊂ Γe(x). Thus we have

0 < µ({y ∈ I : d(fi(x), fi(y)) 6 e for i ∈ Z}) 6 µ(Γe(x)).

Since Hf(p) is measure expansive, µ(Γe(x)) = 0. Thus µ({y ∈ I : d(fi(x), fi(y)) 6 e for i ∈ Z}) = 0 which
is a contradiction.

The proof of (b) is similar as in the proof of item (b) of [21, Lemma 2.6].
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Remark 3.4. In the Lemma 3.3, we consider q ∈ homop. Then we can extend x ∈ Hf(p), that is, for any
x ∈ Hf(p) and ε1 > 0 there exists ε2 > 0 such that fn(Wcs

ε2
(x)) ⊂ Wcs

ε1
(fn(x)) for all n > 0. And if

z ∈Wcs
ε2
(x) and z ∈ Hf(p), then d(fi(z), fi(x))→ 0 as n→∞.

Proposition 3.5. Suppose that the homoclinic class Hf(p) is R-robustly measure expansive. Then Hf(p) has a local
product structure.

Proof. By Lemma 3.3, there is ε2 > 0 such that for any q ∈ homop

Wcs
ε2
(q) =Ws

ε2
(q) and Wcu

ε2
(q) =Wu

ε2
(q).

By Proposition 3.1 (3), there is δ > 0 such that for any q, r ∈ homop,

Ws
ε2
(q)∩Wu

ε2
(r) 6= ∅.

By λ-lemma, Ws
ε2
(q) ⊂ Ws(p) and Wu

ε2
(r) ⊂ Wu(p). Thus we know that Ws

ε2
(q) ∩Wu

ε2
(r) ⊂ Hf(p). This

means that Hf(p) has a local product structure.

Corollary 3.6. Suppose that the homoclinic class Hf(p) is R-robustly measure expansive. Then for any hyperbolic
periodic point q ∈ Hf(p), index(p) = index(q).

Proof. The proof is directly obtained by Proposition 3.1 (3), Lemma 3.3, and Proposition 3.5. Thus for any
hyperbolic periodic point q ∈ Hf(p),

Ws(p) tWu(q) 6= ∅ and Wu(p) tWs(q) 6= ∅.

Thus we have index(p) = index(q).

4. Proof of Theorem 1.2

For any δ > 0, a sequence {xi}i∈Z is a δ-pseudo orbit of f if d(f(xi), xi+1) < δ for all i ∈ Z. Let Λ be a
closed f-invariant set. We say that f has the shadowing property on Λ such that for any ε > 0 there is δ > 0
such that for any δ-pseudo orbit {xi}i∈Z ⊂ Λ there is z ∈ M such that d(fi(z), xi) < ε for all i ∈ Z. The
following proposition is a very useful result for proving of Theorem 1.2.

Proposition 4.1 ([23, Proposition 3.3]). Let p be a hyperbolic periodic point, and let Hf(p) be the homoclinic class
of f containing p. Let 0 < λ < 1 and L > 1 be given. Assume that Hf(p) satisfies the following properties.

(1) There is a continuous Df-invariant splitting THf(p)M = E⊕ F with dimE = index(p) such that for any
x ∈ Hf(p),

‖Df|E(x)‖/m(Df|F(x)) < λ
2,

where m(A) = inf ‖‖A‖ : ‖v‖ = 1} denotes the mininorm of a linear map A.
(2) For any q ∈ Hf(p)∩ P(f), if q is hyperbolic and π(q) > L, then index(p) = index(q) and

π(q)−1∏
i=0

‖Df|Es(fi(q))‖ < λπ(q),
π(q)−1∏
i=0

‖Df−1|Eu(f−i(q))‖ < λπ(q).

(3) f has the shadowing property on Hf(p).

Then Hf(p) is hyperbolic.

End of the Proof of Theorem 1.2. Since Hf(p) is R-robustly measure expansive, by Theorems 2.3 and 2.5,
propositions (1) and (2) hold. By Proposition 3.5 and Bowen’s result [3, Proposition 3.6], if the homo-
clinic class Hf(p) is R-robustly measure expansive then f has the shadowing property on Hf(p), and so,
proposition (3) also holds. Thus if Hf(p) is R-robustly measure expansive then it is hyperbolic.
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