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Abstract

In this paper, we present the notions of (α,p)-convex contraction (resp. (α,p)-contraction) and asymptotically T2-regular
(resp. (T , T2)-regular) sequences, and prove fixed point theorems in the setting of metric spaces.
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1. Introduction and preliminaries

Let (X,d) be a metric space, and C a nonempty set of X. A mapping T : C→ C is called nonexpansive
if d(Tx, Ty) 6 d(x,y) for all x,y ∈ C. In 2007, Goebel and Japón Pineda [8] introduced the class of mean
nonexpansive mappings, an extension for the class of nonexpansive mappings. A mapping T : C → C is
called mean nonexpansive (or α-nonexpansive) if, for some α = (α1,α2, . . . ,αn) with

∑n
i=1 αi = 1, ai > 0

for all i, and α1,αn > 0, we have

n∑
i=1

αid(T
ix, T iy) 6 d(x,y)

for all x,y ∈ C. Further, Goebel and Japón Pineda [8] introduced the class of (α,p)-nonexpansive
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mappings. A mapping T : C → C is called (α,p)-nonexpansive, if for some α = (α1,α2, . . . ,αn) with∑n
i=1 αi = 1, αi > 0 for all i, and α1,αn > 0, and for some p ∈ [1,∞), we have

n∑
i=1

αid
p(T ix, T iy) 6 dp(x,y)

for all x,y ∈ C. In particular, for n = 2, the above inequality reduces to

α1d
p(Tx, Ty) +α2d

p(T 2x, T 2y) 6 dp(x,y)

for all x,y ∈ C, we say that T is ((α1,α2),p)-nonexpansive.

Example 1.1. Let X = [0,∞) ⊂ R with usual metric d(x,y) = |x− y| for all x,y ∈ X. Define a translation
function T : X → X by the formula Tx = x+ a for any fixed a > 0. Now, setting α1 = α2 = 1

2 and p > 1,
we have

|Tx− Ty|p + |T 2x− T 2y|p =2|x− y|p,

that is,

1
2
|Tx− Ty|p +

1
2
|Tx− Ty|p =|x− y|p.

Therefore, T is ((α1,α2),p)-nonexpansive mapping.

Example 1.2. Let X = {0, 1, 2} with usual metric d(x,y) = |x− y| for all x,y ∈ X. Define the mapping

T : X→ X, Tx =

{
1, x 6= 0,
0, x = 0.

Setting α = (α1,α2), α1,α2 > 0 and α1 +α2 = 1, for any p > 1, we have

α1|Tx− Ty|
p +α2|T

2x− T 2y|p 6 |x− y|p.

Therefore, T is ((α1,α2),p)-nonexpansive mapping.

In 1982, Istrǎţescu [10] introduced the class of convex contraction mappings in the setting of metric
space and generalized the well known Banach’s contraction principle [2]. Some works have appeared
recently on generalization of such class of mappings in the setting of metric, ordered metric, and cone
metric, b-metric and 2-metric spaces (for example, Alghamdi et al. [1], Ghorbanian et al. [7], Miandaragh
et al. [14], Miculescu and Mihail [15], Khan et al. [12], etc.).

Let (X,d) be a metric space and T : X → X be a mapping. Given ε > 0, then x0 ∈ X is said to
be an ε-fixed point of T on X, whenever d(x0, Tx0) < ε. Note that every fixed point is ε-fixed point
but the converse need not be true. We denote the set of all ε- fixed points of T for a given ε > 0 by
Fε(T) = {x ∈ X|d(Tx, x) < ε} and Fix(T), the set of all fixed points of T .

We say that T has the approximate fixed point property (AFPP) if for all ε > 0, there exists an ε-fixed
point of T i.e., for all ε, Fε(T) 6= ∅, or equivalently, infx∈X d(Tx, x) = 0.

For details we refer to Berinde [3], Kohlenbach and Leuştean [13], Reich and Zaslavski [16], Tijs et al.
[17].

Example 1.3 ([12]). If X = [0,∞), let T : X → X, Tx = x+ 1
2x+1 for all x ∈ X. Setting 0 < ε < 1

2 and taking
x0 ∈ X such that x0 >

1−ε
2ε , we obtain,

d(Tx0, x0) = |Tx0 − x0| =
∣∣∣ 1
2x0 + 1

∣∣∣ < ε.
This shows that T has an ε-fixed point, so Fε(T) 6= ∅. Note that T has no fixed point in X.
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Definition 1.4 ([4]). A self mapping T on X is said to be asymptotically regular at a point x ∈ X if
limn→∞ d(Tnx, Tn+1x) = 0.

Definition 1.5 ([5]). A sequence {xn} in X is called an asymptotically T -regular, if limn→∞ d(xn, Txn) = 0.

Lemma 1.6 ([3]). If (X,d) is a metric space and T is an asymptotically regular self mapping on X, that is
d(Tmx, Tm+1x)→ 0 for all x ∈ X, then T has the AFPP.

In the next section, we discuss the notions of (α,p)-convex contraction (resp. (α,p)-contraction) and
asymptotically T 2-regular (resp. (T , T 2)-regular) sequences. Further, we show with examples that the
notions of asymptotically T -regular and T 2-regular sequences are independent to each other.

2. (α,p)-convex contraction and asymptotic regularity

Let T be a self mapping on a metric space (X,d).

Definition 2.1. A self mapping T on X is said to be (α,p)-contraction, if for some α ∈ (0, 1) and p > 1,
there exists 0 6 k < 1 satisfying the following inequality

αdp(Tx, Ty) + (1 −α)dp(T 2x, T 2y) 6 kdp(x,y) (2.1)

for all x,y ∈ X.

Note that if we set α = α1, α2 = 1−α, and k = 1 in the inequality (2.1), then T reduces to ((α1,α2),p)-
nonexpansive (see [8]). Further, if p = 1 and k < 1 (resp. k = 1) in the inequality (2.1), then T reduces to
α-contraction (resp. α-nonexpansive) with multi-index length 2 (see [9]).

Definition 2.2. A self mapping T on X is said to be (α,p)-convex contraction, if for some α ∈ (0, 1) and
p > 1, there exist ki > 0 for all i ∈ {1, 2, . . . , 5} such that

∑i=5
i=1 ki < 1 satisfying the following inequality

αdp(Tx, Ty) + (1 −α)dp(T 2x, T 2y) 6 k1d
p(x,y) + k2d

p(x, Tx)

+ k3d
p(Tx, T 2x) + k4d

p(y, Ty) + k5d
p(Ty, T 2y)

(2.2)

for all x,y ∈ X.

Obviously, if ki = 0 for all i ∈ {2, 3, 4, 5}, then the inequality (2.2) reduces to (α,p)-contraction. We
shall call α-contraction and α-convex contraction, if p = 1 in the inequalities (2.1) and (2.2). If α = k1 = 0
and p = 1 in (2.2), then it reduces to two-sided convex contraction [10].

Example 2.3. On X = [0, 1], consider T : X → X, endowed with usual metric d(x,y) = |x− y|. We define
Tx = 1−x2

2 , for all x ∈ X. Then, we obtain T 2x = 3+2x2−x4

8 . Now, we have

|Tx− Ty| =
1
2
|x2 − y2| =

(x+ y)

2
|x− y| 6 |x− y|.

Also,

|T 2x− T 2y| =
1
8
|(2x2 − x4) − (2y2 − y4)| 6

1
4
|x2 − y2|+

1
8
|x4 − y4| 6 |x− y|.

Therefore, for α = 1
2 and p = 1, we obtain

α|Tx− Ty|+ (1 −α)|T 2x− T 2y| 6 |x− y|.

This shows that T is nonexpansive and α-nonexpansive for p = 1.
Further, for p = 2 and α = 1

2 , we obtain

α|Tx− Ty|2 + (1 −α)|T 2x− T 2y|2 6
1
2
|x− y|2 +

1
8
|x− y|2 =

5
8
|x− y|2.

This shows that T is (α,p)-contraction for p = 2 > 1.
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In [6], Gallagher mentioned that all nonexpansive mappings are mean nonexpansive, but the converse
is not true. That is, there exists a mean nonexpansive mapping which is not nonexpansive (see [6, Exam-
ples 2.3 and 2.4]). However, it may happen that a nonexpansive mapping need not necessarily be a mean
nonexpansive.

Example 2.4. Let T : X→ X, where X = [0, 1] with usual metric d(x,y) = |x− y|. We define Tx = x2

2 for all
x ∈ X. Setting α = 1

2 and p = 1. Now, we have

|Tx− Ty| =
1
2
|x2 − y2| 6 |x− y|.

Also, we have,

|T 2x− T 2y| =
1
8
|x4 − y4| =

(x2 + y2)(x+ y)

8
|x− y| 6

1
2
|x− y|.

Therefore,

1
2
|Tx− Ty|+

1
2
|T 2x− T 2y| 6

3
4
|x− y|,

where, k = 3
4 ,α = 1

2 . This shows that T is nonexpansive but not mean nonexpansive.

Now, we introduce the notions of asymptotically T 2-regular (resp. (T , T 2)-regular) sequences.

Definition 2.5. A sequence {xn} is called an asymptotically T 2-regular, if limn→∞ d(xn, T 2xn) = 0.

Example 2.6. Let X = R endowed with usual metric d(x,y) = |x− y|. We define

T : X→ X, Tx =

{
1 − x2, x 6= 1,
2, x = 1.

Choose a sequence {xn} in X such that xn → 1 as n→∞, except the constant sequence xn = 1. Then,
Txn = (1 − x2

n) → 0 as n → ∞. Therefore, limn→∞ |Txn − xn| = 1 6= 0. Also, we have T 2xn = T(Txn) =
T(1 − xn

2) = [1 − (1 − xn
2)2] → 1. Consequently, |xn − T 2xn| → 0. Therefore, {xn} is asymptotically

T 2-regular sequence but not asymptotically T -regular sequence in X.

Example 2.7. Let T : X→ X, where X = R with the usual metric d(x,y) = |x− y|. Define

Tx =


x2

2 , x < 2,
0, x = 2,
2, x > 2.

Consider a sequence {xn} in X such that xn → 2 as n → ∞, except the constant sequence xn = 2.
Then, Txn → 2 as n → ∞. Therefore, limn→∞ |Txn − xn| = 0. Further, we have T 2xn = T(Txn) → 2 or
0, according as xn → 2 from left or right. So, limn→∞ T 2xn does not exist. Therefore, |xn − T 2xn| does
not tend to 0 as n → 0. It shows that {xn} is asymptotically T -regular sequence, but not asymptotically
T 2-regular sequence in X.

It may be observed from Examples 2.6 and 2.7, that the notions of asymptotically T -regular and T 2

-regular sequences are independent to each other.

Definition 2.8. A sequence {xn} in X is called an asymptotically (T , T 2)-regular, if limn→∞ d(xn, Txn) = 0
and limn→∞ d(xn, T 2xn) = 0.
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Obviously, if {xn} is an asymptotically (T , T 2)-regular sequence, then it satisfies both asymptotically T
and T 2-regular conditions.

Example 2.9. Let T : X→ X, where X = R with usual metric d(x,y) = |x− y|. Define

Tx =


4 − x, x < 2,
0, x = 2,
x2

2 , x > 2.

Consider a sequence {xn} in X such that xn → 2 as n → ∞, except the constant sequence xn = 2. Then,
Txn → 2 as n → ∞ and T 2xn = T(Txn) → 2. Therefore, |xn − Txn| → 0 and |xn − T 2xn| → 0 as n → ∞.
So, {xn} is both asymptotically T -regular and T 2-regular sequence in X. Therefore, {xn} is asymptotically
(T , T 2)-regular sequence in X.

Lemma 2.10. If a sequence {xn} in X is asymptotically (T , T 2)-regular in X, then

lim
n→∞d(Txn, T 2xn) = 0.

Proof. By the triangle inequality, we obtain

d(Txn, T 2xn) 6 d(Txn, xn) + d(xn, T 2xn).

Hence, d(Txn, T 2xn)→ 0 as n→∞.

The converse of Lemma 2.10 is not true. In support of this, we have the following example.

Example 2.11. Let T : X→ X, where X = R with usual metric d(x,y) = |x− y|. We consider

Tx =

{
1, x 6= 0,
0, x = 0.

Choose a sequence {xn} in X such that xn → 0 as n → ∞. Then, Txn and T 2xn converge to 1 as n → ∞.
Therefore, |Txn − xn| → 1 6= 0 and |xn − T 2xn| → 1 6= 0 as n → ∞. It shows that d(Txn, T 2xn) → 0
as n → ∞, but the sequence {xn} is neither asymptotically T -regular nor asymptotically T 2-regular in X.
Therefore, the sequence {xn} is not asymptotically (T , T 2)-regular.

3. Fixed point results

Theorem 3.1. Let (X,d) be a metric space and T : X→ X be a (α,p)-contraction such that k+α < 1. Then, T has
the AFPP. Further, if (X,d) is a complete metric space, then T has a unique fixed point.

Proof. Let x0 ∈ X. Now, we define a sequence {xn} by xn+1 = Tn+1x0 for all n > 0. If xn = xn+1 i.e.,
Tnx0 = T(Tnx0) for some n, then the conclusion follows immediately. Without lost of generality, we
assume that xn 6= xn+1 for all n > 0. Setting v = d(x0, Tx0) + d(Tx0, T 2x0) we have d(x0, Tx0) 6 v and
d(Tx0, T 2x0) 6 v. Taking x = x0 and y = Tx0 in the inequality (2.1), we obtain

(1 −α)dp(T 2x0, T 3x0) 6 αd
p(Tx0, T 2x0) + (1 −α)dp(T 2x0, T 3x0)

6 kdp(x0, Tx0) = kv
p ⇒ dp(T 2x0, T 3x0) 6

k

1 −α
vp ⇒ d(T 2x0, T 3x0) 6 hv,

where hp = k
1−α , and since k+α < 1⇒ hp < 1.

Again, taking x = Tx0 and y = T 2x0 in relation (2.1), we obtain

(1 −α)dp(T 3x0, T 4x0) 6 αd
p(T 2x0, T 3x0) + (1 −α)dp(T 3x0, T 4x0)
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6 kdp(Tx0, T 2x0)⇒ dp(T 3x0, T 4x0) 6 h
pvp ⇒ d(T 3x0, T 4x0) 6 hv.

And

(1 −α)dp(T 4x0, T 5x0) 6 αd
p(T 3x0, T 4x0) + (1 −α)dp(T 4x0, T 5x0) 6 kd

p(T 2x0, T 3x0)⇒ d(T 4x0, T 5x0) 6 h
2v.

Also, we obtain

d(T 5x0, T 6x0) 6 h
2v.

Following similar arguments as in ([12, 14]), we obtain d(Tmx0, Tm+1x0) 6 hlv, whenever m = 2l or
m = 2l+ 1. Therefore, d(Tmx0, Tm+1x0)→ 0 as m→∞, i.e., T is asymptotically regular at x0. By Lemma
1.6, T has an approximate fixed point. Now, suppose that T is continuous and (X,d) is a complete metric
space. In order to show that {xn} is a Cauchy sequence in X, fix a nonzero positive integer m.

Case (i). For m = 2l with l,q > 1, then

d(Tmx0, Tm+qx0) =d(T
2lx0, T 2l+qx0)

6d(T 2lx0, T 2l+1x0) + d(T
2l+1x0, T 2l+2x0)

+ d(T 2l+2x0, T 2l+3x0) + d(T
2l+3x0, T 2l+4x0) + · · ·

+ d(T 2l+q−2x0, T 2l+q−1x0) + d(T
2l+q−1x0, T 2l+qx0)

6hlv+ hlv+ hl+1v+ hl+1v+ · · ·

62hl
(

1 + h+ h2 + h3 + · · ·
)
v 6 2hl

1
(1 − h)

v.

Case (ii). Similarly, for m = 2l+ 1 with l,q > 1, we obtain

d(Tmx0, Tm+qx0) =d(T
2l+1x0, T 2l+q+1x0)

6d(T 2l+1x0, T 2l+2x0) + d(T
2l+2x0, T 2l+3x0)

+ d(T 2l+3x0, T 2l+4x0) + d(T
2l+4x0, T 2l+5x0) + · · ·

+ d(T 2l+q−1x0, T 2l+qx0) + d(T
2l+qx0, T 2l+q+1x0)

6hlv+ hl+1v+ hl+1v+ hl+2v+ · · ·

62hl
(

1 ++h+ h2 + h3 + · · ·
)
v 6 2hl

1
(1 − h)

v.

Taking l → ∞ in all cases, since h < 1, we obtain, d(Tmx0, Tnx0) → 0. Therefore, {xn} is a Cauchy
sequence in X. Since, X is complete, there exists a point z ∈ X such that xn = Tnx0 → z ∈ X as n → ∞.
This shows that z is a fixed point of T . Now, we prove that T has a unique fixed point in X. Let z∗ ∈ X be
another fixed point of T . Using (2.1) for x = z and y = z∗, we obtain

αdp(Tz, Tz∗) + (1 −α)dp(T 2z, T 2z∗) 6kdp(z, z∗)⇒ (1 − k)dp(z, z∗) 6 0

leading to d(z, z∗) = 0, a contradiction. Hence, T has a unique fixed point in X.

We have the following example for the validity of Theorem 3.1.

Example 3.2. Let T : X → X, where X = [0, 1] with usual metric d(x,y) = |x− y|. Define Tx = 1−x2

2 for all
x ∈ X. Setting α = 1

6 and p = 2, we obtain

α|Tx− Ty|2 + (1 −α)|T 2x− T 2y|2 6 α|x− y|2 +
(1 −α)

2
|x− y|2 =

(1 +α)

2
|x− y|2 =

7
12

|x− y|2.

This shows that T is (α,p)-contraction with α+ k = 3
4 < 1. Moreover, x = −1 +

√
2 is the unique fixed

point of T in X.
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Theorem 3.3. Let (X,d) be a metric space and T : X → X be a (α,p)-convex contraction such that
(∑5

i=1 ki

)
+

α < 1. Then, T has the AFPP. Further, if (X,d) is a complete metric space, then T has a unique fixed point.

Proof. We define a sequence {xn} by xn+1 = Tn+1x0 for all n > 0 and continue the same arguments as in
Theorem 3.1, setting v = d(x0, Tx0) + d(Tx0, T 2x0). Now, using (2.2) for x = x0 and y = Tx0, we obtain

(1 −α)dp(T 2x0, T 3x0) 6+αdp(Tx0, T 2x0) + (1 −α)dp(T 2x0, T 3x0)

6(k1 + k2)d
p(x0, Tx0) + (k3 + k4)d

p(Tx0, T 2x0 + k5d
p(T 2x0, T 3x0)

6(k1 + k2 + k3 + k4)v
p + k5d

p(T 2x0, T 3x0).

Therefore,

dp(T 2x0, T 3x0) 6
k1 + k2 + k3 + k4

1 −α− k5
vp = hpvp ⇒ d(T 2x0, T 3x0) 6 hv

for hp =
(
k1+k2+k3+k4

1−α−k5

)
; moreover, since

(∑5
j=1 kj

)
+α < 1⇒ hp < 1.

Similarly, one can obtain

d(T 3x0, T 4x0) 6 hv, and d(T 4x0, T 5x0) 6 h
2v, and d(T 5x0, T 6x0) 6 h

2v.

Following similar arguments as in Theorem 3.1, we obtain d(Tmx0, Tm+1x0) → 0 as m → ∞, i.e., T is
asymptotically regular at x0. By Lemma 1.4, T has AFPP. Further, by assuming the continuity of T and the
completeness of X, the existence of a fixed point z can be proved, using similar arguments as in Theorem
3.1.

Now, we show that T has a unique fixed point in X. Let z∗ ∈ X be another fixed point of T . Using (2.2)
for x = z and y = z∗, we obtain

αdp(Tz, Tz∗) + (1 −α)dp(T 2z, T 2z∗) 6k1d
p(z, z∗) + k2d

p(z, Tz) + k3d
p(Tz, T 2z)

+ k4d
p(z∗, Tz∗) + k5d

p(Tz∗, T 2z∗)⇒ (1 − k1)d
p(z, z∗) 6 0,

which gives d(z, z∗) = 0, a contradiction and hence, T has a unique fixed point in X.

One can verify the validity of Theorem 3.3 with Example 3.2 taking with α = 1
6 ,k1 = 7

12 ,k2 = k3 =
k4 = k5 = 0, and p = 2.

Theorem 3.4. Let (X,d) be a complete metric space and T : X→ X be a (α,p)-contraction such that 0 6 k < α or
k+α < 1. If T is asymptotically regular at some point x0 in X, then there exists a unique fixed point of T .

Proof. Let T be an asymptotically regular mapping at x0 ∈ X. Consider a sequence {Tnx0} in X and for
any two non zero positive integers m,n > 1 such that m > n, let us analyze the following two situations:

Case(i). When 0 6 k < α. Using the inequality (2.1), we obtain

αdp(Tmx0, Tnx0) 6αd
p(Tmx0, Tnx0) + (1 −α)dp(Tm+1x0, Tn+1x0)

6kdp(Tm−1x0, Tn−1x0) 6 k
[
d(Tm−1x0, Tmx0) + d(T

mx0, Tnx0) + d(T
nx0, Tn−1x0)

]p
.

Taking n,m→∞ and using the asymptotically regularity of T at x0, the above inequality gives

α lim
n→∞dp(Tmx0, Tnx0) 6k lim

n→∞dp(Tmx0, Tnx0),

that is,

(α− k) lim
n→∞dp(Tmx0, Tnx0) 6 0.

Since 0 6 k < α, it follows limn→∞ d(Tmx0, Tnx0) = 0.
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Case(ii). When 0 < k+α < 1. Using the inequality (2.1), we obtain

(1 −α)dp(Tmx0, Tnx0) 6αd
p(Tm−1x0, Tn−1x0) + (1 −α)dp(Tmx0, Tnx0)

6kdp(Tm−2x0, Tn−2x0)

6k
[
d(Tm−2x0, Tmx0) + d(T

mx0, Tnx0) + d(T
nx0, Tn−2x0)

]p
6k
[
d(Tm−2x0, Tm−1x0) + d(T

m−1x0, Tmx0)

+ d(Tmx0, Tnx0) + d(T
nx0, Tn−1x0) + d(T

n−1x0, Tn−2x0)
]p

.

Taking n,m→∞, we find

(1 −α) lim
n→∞dp(Tmx0, Tnx0) 6 k lim

n→∞dp(Tmx0, Tnx0)⇒ (1 −α− k) lim
n→∞dp(Tmx0, Tnx0) 6 0.

Therefore, limn→∞ d(Tmx0, Tnx0) = 0 as 0 < k+α < 1. Consequently, {Tnx0} is a Cauchy sequence in X.
Since X is complete, it follows Tnx0 → z as n→∞ for some z ∈ X. Now, we show that Tz = z, i.e., z is a
fixed point of T . For this, using again the inequality (2.1), we find

αdp(Tz, Tnx0) 6 αd
p(Tz, Tnx0) + (1 −α)dp(T 2z, Tn+1x0) 6 kd

p(z, Tn−1x0).

As n→∞, we obtain

αdp(Tz, z) 6 0,

which leads to d(Tz, z) = 0, that is Tz = z. Therefore, z is a fixed point of T . The uniqueness of the fixed
point follows immediately as in Theorem 3.1.

Example 3.5. Let T : X → X, where X = [0, 1] with usual metric d(x,y) = |x− y|. Define Tx = 1+x
2 for all

x ∈ X. For any arbitrary x0 ∈ X, we have Tx0 = 1+x0
2 and Tnx0 = 2n−1+x0

2n , where Tn denotes the nth

iterate of T . Also, we have

lim
n→∞d(Tnx0, Tn+1x0) = lim

n→∞
∣∣∣2n − 1 + x0

2n
−

2n+1 − 1 + x0

2n+1

∣∣∣ = 0.

This shows that T is asymptotically regular at all points in X. Obviously, {Tnx0} is a sequence in X such
that Tnx0 → 1 ∈ X as n→∞. Taking α = 1

3 , k = 1
8 , and p = 2, then T is (α,p)-contraction for all x,y ∈ X

such that k < α or k+ α < 1. Thus, all the conditions of Theorem 3.4 are satisfied and hence, 1 is the
unique fixed point of T .

Theorem 3.6. Let (X,d) be a complete metric space and T : X → X be a α-contraction such that k < α. If there
exists an asymptotically T -regular sequence in X, then T has a unique fixed point.

Proof. Let {xn} be an asymptotically T -regular sequence in X. Then, for any two non zero positive integers
m,n such that m > n, we obtain

αd(xm, xn) 6α
[
d(xm, Txm) + d(Txm, Txn) + d(Txn, xn)

]
=α
[
d(xm, Txm) + d(Txn, xn)

]
+αd(Txm, Txn)

6α
[
d(xm, Txm) + d(Txn, xn)

]
+αd(Txm, Txn) + (1 −α)d(T 2xm, T 2xn)

6α
[
d(xm, Txm) + d(Txn, xn)

]
+ kd(xm, xn),



M. S. Khan, et al., J. Math. Computer Sci., 18 (2018), 132–145 140

that is,

d(xm, xn) 6
α

α− k

[
d(xm, Txm) + d(Txn, xn)

]
.

Taking n,m→∞ and using the fact that the sequence {xn} is asymptotically T -regular, we obtain

lim
n→∞d(xm, xn) = 0.

This shows that {xn} is a Cauchy sequence. Since X is complete, there exists a point z ∈ X such that
xn → z ∈ X as n→∞.

Now, we show that Tz = z, i.e., z is a fixed point of T .

αd(Tz, xn) 6α
[
d(Tz, Txn) + d(Txn, xn)

]
6αd(Tz, Txn) + (1 −α)d(T 2z, T 2xn) +αd(Txn, xn) 6 kd(z, xn) +αd(Txn, xn).

As n→∞ and since {xn} is asymptotically T -regular, we obtain

αd(Tz, z) 6 0

leading to Tz = z. Therefore, z is a fixed point of T . The uniqueness of the fixed point follows immediately.

Example 3.7. Let T : X → X, where X = [0, 1] with usual metric d(x,y) = |x− y|. Define Tx = x
3 for all

x ∈ X. Consider a sequence {xn} in X such that xn → 0, then Txn → 0, i.e., |xn − Txn|→ 0 as n→∞. So,
{xn} is asymptotically T -regular in X. Setting α = 1

2 , k = 2
9 , then T is α-contraction for all x,y ∈ X such

that k < α. Thus, all the conditions of Theorem 3.6 are satisfied and hence, 0 is the unique fixed point of
T .

Theorem 3.8. Let (X,d) be a complete metric space and T : X→ X be a α-contraction such that k+α < 1. If there
exists an asymptotically T 2-regular sequence in X, then T has a unique fixed point.

Proof. Let {xn} be an asymptotically T 2-regular sequence in X. Then, for any two non zero positive integers
m,n such that m > n, we obtain

(1 −α)d(xm, xn) 6(1 −α)
[
d(xm, T 2xm) + d(T 2xm, T 2xn) + d(T

2xn, xn)
]

=(1 −α)
[
d(xm, T 2xm) + d(T 2xn, xn)

]
+ (1 −α)d(T 2xm, T 2xn)

6(1 −α)
[
d(xm, T 2xm) + d(T 2xn, xn)

]
+αd(Txm, Txn) + (1 −α)d(T 2xm, T 2xn)

6(1 −α)
[
d(xm, T 2xm) + d(T 2xn, xn)

]
+ kd(xm, xn),

that is,

d(xm, xn) 6
1 −α

1 −α− k

[
d(xm, T 2xm) + d(T 2xn, xn)

]
.

Since {xn} is asymptotically T 2-regular sequence, by taking n,m→∞, we obtain

lim
n→∞d(xm, xn) = 0,

which proves that {xn} is a Cauchy sequence. Since, X is complete, there exists a point z ∈ X such that
xn → z ∈ X as n→∞.

In order to show that z is a fixed point of T in X, we make several steps.
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First, we show that T 2z = z. Using inequality (2.1), we obtain

(1 −α)d(T 2z, xn) 6(1 −α)
[
d(T 2z, T 2xn) + d(T

2xn, xn)
]

6αd(Tz, Txn) + (1 −α)d(T 2z, T 2xn) + (1 −α)d(T 2xn, xn)

6kd(z, xn) + (1 −α)d(T 2xn, xn).

Taking n→∞, and using the asymptotically T 2-regularity of the sequence {xn}, we obtain

(1 −α)d(T 2z, z) 6 0,

which gives T 2z = z. Therefore, one can obtain inductively that T 2nz = z and T 2n+1z = Tz for n > 1.
We show that Tz = z, i.e., z is a fixed point of T .
Using the inequality(2.1), we obtain

(1 −α)d(z, Tz) = (1 −α)d(T 2z, T 3z) 6 αd(Tz, T 2z) + (1 −α)d(T 2z, T 3z) 6 kd(z, Tz),

that is,

(1 −α− k)d(z, Tz) 60

a contradiction, if Tz 6= z. Therefore, z is a fixed point of T . Using the inequality (2.1), one can obtain the
uniqueness of fixed point.

Example 3.9. Let T : X → X, where X = {0, 1, 2} and A = {0, 1} ⊂ X with usual metric d(x,y) = |x− y|.
Define

Tx =

{
1, x /∈ A,
0, x ∈ A.

Consider a sequence {xn} in X such that xn → 0, then Txn → 1 and T 2xn → 0 as n → ∞. Consequently,
|xn − T 2xn| → 0 as n → ∞. So, {xn} is asymptotically T 2-regular in X. Setting α = k = 1

3 , then T is
α-contraction for all x,y ∈ X such that k+α < 1. Thus, all the conditions of Theorem 3.8 are satisfied and
hence, 0 is the unique fixed point of T .

The following Theorems 3.10 and 3.12 are motivated by Theorems 3.1 and 3.4 of Khan and Jhade [11].

Theorem 3.10. Let (X,d) be a complete metric space and T : X → X be an α-convex contraction such that 0 <
k1 + α < 1 and µ,h < 1, where µ = max{ k3

α−k2−k3
, k5
α−k4−k5

} and h = max{ k2+k3
1−α−k3

, k4+k5
1−α−k5

}. If there exists an
asymptotically (T , T 2)-regular sequence in X, then T has a unique fixed point.

Proof. Let {xn} be an asymptotically (T , T 2)-regular sequence in X. Then, for any non zero positive integers
m,n such that m > n, we obtain

(1 −α)d(xm, xn) 6(1 −α)
[
d(xm, T 2xm) + d(T 2xm, T 2xn) + d(T

2xn, xn)
]

=(1 −α)
[
d(xm, T 2xm) + d(T 2xn, xn)

]
+ (1 −α)d(T 2xm, T 2xn)

6(1 −α)
[
d(xm, T 2xm) + d(T 2xn, xn)

]
+αd(Txm, Txn) + (1 −α)d(T 2xm, T 2xn)

6(1 −α)
[
d(xm, T 2xm) + d(T 2xn, xn)

]
+ k1d(xm, xn) + k2d(xm, Txm) + k3d(Txm, T 2xm) + k4d(xn, Txn) + k5d(Txn, T 2xn),
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that is,

(1 −α− k1)d(xm, xn) 6(1 −α)
[
d(xm, T 2xm) + d(T 2xn, xn)

]
+ k2d(xm, Txm) + k3d(Txm, T 2xm) + k4d(xn, Txn) + k5d(Txn, T 2xn).

Since, {xn} is asymptotically (T , T 2)-regular sequence. Letting n,m → ∞ and using Lemma 2.10, we
obtain limn→∞ d(xn, xm) = 0. This shows that {xn} is a Cauchy sequence in X. Since, X is complete, there
exists a point z ∈ X such that xn → z ∈ X as n → ∞. Now, we show that z is a fixed point of T in X. For
this, first we show that T 2z = z. Using inequality (2.1), we obtain

(1 −α)d(T 2z, xn) 6(1 −α)
[
d(T 2z, T 2xn) + d(T

2xn, xn)
]

6
[
αd(Tz, Txn) + (1 −α)d(T 2z, T 2xn)

]
+ (1 −α)d(T 2xn, xn)

6k1d(z, xn) + k2d(z, Tz) + k3d(Tz, T 2z)

+ k4d(xn, Txn) + k5d(Txn, T 2xn) + (1 −α)d(T 2xn, xn)

6k1d(z, xn) + k2d(z, Tz) + k3

[
d(Tz, xn) + d(T 2z, xn)

]
+ k4d(xn, Txn) + k5d(Txn, T 2xn) + (1 −α)d(T 2xn, xn),

that is,

(1 −α− k3)d(T
2z, xn) 6k1d(z, xn) + k2d(z, Tz) + k3d(Tz, xn)

+ k4d(xn, Txn) + k5d(Txn, T 2xn) + (1 −α)d(T 2xn, xn).

Taking n→∞ and using Lemma 2.10, we obtain

(1 −α− k3)d(T
2z, z) 6(k2 + k3)d(z, Tz),

that is,

d(T 2z, z) 6
k2 + k3

1 −α− k3
d(Tz, z).

Similarly, by symmetry of the α-convex contraction, one can obtain

d(T 2z, z) 6
k4 + k5

1 −α− k5
d(Tz, z).

Since, h = max{ k2+k3
1−α−k3

, k4+k5
1−α−k5

} < 1. This shows that d(T 2z, z) 6 hd(Tz, z).
Now, we show that Tz = z, i.e., z is a fixed point of T .

αd(Tz, xn) 6α
[
d(Tz, Txn) + d(Txn, xn)

]
+ (1 −α)d(T 2z, T 2xn)

=αd(Tz, Txn) + (1 −α)d(T 2z, T 2xn) +αd(Txn, xn)

6k1d(z, xn) + k2d(z, Tz) + k3d(Tz, T 2z)

+ k4d(xn, Txn) + k5d(Txn, T 2xn) +αd(Txn, xn)
6k1d(z, xn) + k2d(z, Tz) + k3d(Tz, z)

+ k3d(T
2z, z) + k4d(xn, Txn) + k5d(Txn, T 2xn) +αd(Txn, xn).

As n→∞, we obtain

αd(Tz, z) 6(k2 + k3)d(Tz, z) + k3d(T
2z, z),
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that is,

d(Tz, z) 6
k3

α− k2 − k3
d(T 2z, z).

Similarly, based on the symmetry of α-convex contractions, one can prove

d(Tz, z) 6
k5

α− k4 − k5
d(T 2z, z).

Since µ = max{ k3
α−k2−k3

, k5
α−k4−k5

} < 1, we find

d(Tz, z) 6 µd(T 2z, z) 6 hµd(Tz, z),

that is,

(1 − hµ)d(Tz, z) 6 0

leading to d(Tz, z) = 0 as hµ < 1. Therefore, z is a fixed point of T . For uniqueness, let z∗ ∈ X be another
fixed point of T . Using (2.1) for x = z and y = z∗, we obtain

αd(Tz, Tz∗) + (1 −α)d(T 2z, T 2z∗) 6 k1d(z, z∗) + k2d(z, Tz) + k3d(Tz, T 2z) + k4d(z
∗, Tz∗) + k5d(Tz

∗, T 2z∗),

that is,

(1 − k1)d(z, z∗) 6 0,

which in turn gives d(z, z∗) = 0 and hence, T has a unique fixed point in X.

Example 3.11. Let T : X → X, where X = [0, 1]. Define Tx = 1+x
4 for all x ∈ X. Consider a sequence {xn}

in X such that xn → 1
3 as n → ∞. Consequently, Txn, T 2xn → 1

3 as n → ∞. Therefore, the sequence {xn}

is asymptotically (T , T 2)-regular in X. Setting α = 1
2 ,k1 = 5

32 ,k2 = k3 = k4 = k5 = 0, then T is α-convex
contraction such that k1 + α < 1, µ = 0 < 1 and h = 0 < 1. Thus, all the conditions of Theorem 3.10 are
satisfied and hence, 1

3 is the unique fixed point of T .

Theorem 3.12. Let (X,d) be a complete metric space and T : X → X be a α-convex contraction such that k1 < α

or, 0 < k1 + α < 1 and µ,h < 1, where µ = max{ k3
α−k2−k3

, k5
α−k4−k5

} and h = max{ k2+k3
1−α−k3

, k4+k5
1−α−k5

}. If T is
asymptotically regular at some point x0 in X, then there exists a unique fixed point of T .

Proof. Let T be an asymptotically regular mapping at x0 ∈ X. Consider a sequence {Tnx0} and for any two
non zero positive integers m,n > 1 such that m > n.

We analyze the following cases.

Case (i). When k1 < α. We obtain

αd(Tmx0, Tnx0) 6αd(T
mx0, Tnx0) + (1 −α)d(Tm+1x0, Tn+1x0)

6k1d(T
m−1x0, Tn−1x0) + k2d(T

m−1x0, Tmx0)

+ k3d(T
mx0, Tm+1x0) + k4d(T

n−1x0, Tnx0) + k5d(T
nx0, Tn+1x0)

6k1

[
d(Tm−1x0, Tmx0) + d(T

mx0, Tnx0)

+ d(Tnx0, Tn−1x0)
]
+ k2d(T

m−1x0, Tmx0)

+ k3d(T
mx0, Tm+1x0) + k4d(T

n−1x0, Tnx0) + k5d(T
nx0, Tn+1x0),
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that is,

(α− k1)d(T
mx0, Tnx0) 6(k1 + k2)d(T

m−1x0, Tmx0)

+ (k1 + k4)d(T
n−1x0, Tnx0) + k3d(T

mx0, Tm+1x0) + k5d(T
nx0, Tn+1x0).

Taking n,m→∞ and using the asymptotically regularity of T at x0, we obtain

lim
n→∞d(Tmx0, Tnx0) = 0.

Case (ii). When 0 < k1 +α < 1, we obtain

(1 −α)d(Tmx0, Tnx0) 6αd(T
m−1x0, Tn−1x0) + (1 −α)d(Tmmx0, Tnx0)

6k1d(T
m−2x0, Tn−2x0) + k2d(T

m−2x0, Tm−1x0)

+ k3d(T
m−1x0, Tmx0) + k4d(T

n−2x0, Tn−1x0) + k5d(T
n−1x0, Tnx0)

6k1

[
d(Tm−2x0, Tm−1x0) + d(T

m−1x0, Tmx0)

+ d(Tmx0, Tnx0) + d(T
nx0, Tn−1x0)

+ d(Tn−1x0, Tn−2x0)
]
+ k2d(T

m−1x0, Tmx0)

+ k3d(T
mx0, Tm+1x0) + k4d(T

n−1x0, Tnx0) + k5d(T
nx0, Tn+1x0).

Taking n,m→∞, we obtain

(1 −α− k1) lim
n→∞d(Tm+1x0, Tn+1x0) 6 0,

which gives limn→∞d(Tm+1x0, Tn+1x0) = 0.
In both cases it follows that {Tnx0} is a Cauchy sequence in X. Since X is complete, so Tnx0 → z as

n → ∞ for some z ∈ X. Thus, by following the same argument as in Theorem 3.10, one can obtain the
unique fixed point of T .

One can check the validity of Theorem 3.12 with Example 3.5 setting with α = 2
5 ,k1 = 7

20 ,k2 = k3 =
k4 = k5 = 0, and p = 1.

Corollary 3.13. Let (X,d) be a metric space and T : X → X be a two-sided convex contraction mapping. Then, T
has AFPP. Further, if (X,d) is a complete metric space, then T has a unique fixed point.
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