Fixed points for Quasi contraction maps on complete metric spaces

Amalendu Choudhury ${ }^{\text {a }}$, T. Som ${ }^{\mathrm{b}, *}$
${ }^{a}$ Department of Mathematics and Statistics Haflong Govt. College, Haflong-788819, Dima Hasao, Assam, India.
${ }^{b}$ Department of Mathematical Sciences, Indian Institute of Technology (Banaras Hindu University), Varanasi -221005, India.

Abstract

The present paper deals with unique fixed point results for quasi contraction mappings on a metric space satisfying some generalized inequality conditions in first section and unique common fixed point result for asymptotically regular mappings of certain type and satisfying a generalized contraction condition in another section. The results obtained generalize the earlier results of Fisher (1979), Hardy and Roger (1973) and others in turn. © 2016 All rights reserved.

Keywords: Quasi contraction, complete metric space, asymptotically regular, generalized contraction, fixed point.
2010 MSC: 47H09, 54E50, 47H10.

1. Introduction

Definition 1.1 ([1]). A mapping T on a metric space X into itself is said to be a quasi - contraction if and only if there exist a number c, with $0 \leq \mathrm{c}<1$, such that

$$
d(T x, T y) \leq c \max \{d(x, y) d(x, T x), d(y, T y), d(x, T y), d(y, T x)\}
$$

for all x, y in X.
Definition 1.2 ([1]). X is said to be T orbitally complete if and only if every Cauchy sequence which is contained in the sequence $\left\{x, T x, \ldots, T^{n} x, \ldots\right\}$ for some x in X converges in X.

[^0]He then established the following basic results for such mappings:
Theorem 1.3. Let T be a quasi contraction on the metric space X into itself and let X be T orbitally complete. Then T has a unique fixed point in X.

Theorem 1.4. Let T be a continuous mapping on the complete metric space X into itself satisfying the inequality:

$$
\left.d\left(T^{p} x, T^{q} y\right) \leq c \max \left\{d\left(T^{r} x, T^{s} y\right), d\left(T^{r} x, T^{\gamma^{\prime}} x\right), d\left(T^{s} y, T^{s^{\prime}} y\right)\right\}: 0 \leq r, r^{\prime}<p \text { and } 0 \leq s, s^{\prime} \leq q\right\}
$$

for all x, y in X, where $0 \leq c<1$, for some positive integer p and q, then T has a unique fixed point.
For a continuous quasi contraction mapping the following result is proved.
Theorem 1.5. Let T be a quasi contraction on the metric space X into itself and let T be continuous. Then T has a unique fixed point in X.

It may be noted that in case when T is a quasi contraction for which $q($ or $p)=1$, the continuity condition of T is unnecessary. We then have,

Theorem 1.6. Let T be a mapping on the complete metric space X into itself satisfying the inequality

$$
\left.d\left(T^{p} x, T y\right) \leq c \max \left\{d\left(T^{r} x, T^{s} y\right), d\left(T^{r} x, T^{\gamma^{\prime}} x\right), d\left(T^{s} y, T^{s^{\prime}} y\right)\right\}: 0 \leq r, r^{\prime}<p \text { and } s=0,1\right\}
$$

for all x, y in X, where $0 \leq c<1$, for some positive integer p. Then T has a unique fixed point in X.

In the next section we obtain some fixed point results for such mappings, which satisfy a more general inequality conditions.

2. Results for Quasi contraction mappings

Theorem 2.1. Let T be a quasi contraction on the complete metric space X into itself satisfying the inequality

$$
\begin{equation*}
d\left(T p x, T^{q} y\right) \leq c \max \left\{d\left(T^{\gamma} x, T^{s} y\right), d\left(T^{\gamma} x, T^{\gamma^{\prime}} x\right), d\left(T^{s} y, T^{s^{\prime}} y\right), d\left(T^{\gamma^{\prime}} x, T^{s^{\prime}} y\right)\right\} \tag{2.1}
\end{equation*}
$$

$0 \leq \gamma, \gamma<p$ and $0 \leq s, s^{\prime} \leq q$ for all x, y in X where $0 \leq c<1$ and for some fixed positive integers p and q. Then T has a unique fixed point in X.

Proof. Without loss of generality we assume that $\frac{1}{2} \leq \mathrm{c}<1$. Inequality (2.1) will still hold but we will then have $\frac{c}{1-c} \geq 1$. We assume that $\mathrm{p} \geq \mathrm{q}$. Let for an arbitrary point x in X the sequence $\left\{\mathrm{T}^{n} \mathrm{x}\right\}$ is unbounded.
Then the sequence $\left\{d\left(T^{n} x, T^{q} x\right): n=1,2, \ldots\right\}$ is unbounded and so there exists an integer n such that

$$
\left(T^{n} x, T^{q} x\right)>\left(\frac{c}{1-c}\right) \max \left\{d\left(T^{i} x, T^{q} x\right): 0 \leq i<p\right\} .
$$

Suppose n is the smallest such integer satisfying the above inequality and since $\frac{c}{1-c} \geq 1$, we must have $n>p \geq q$.

Thus

$$
\begin{align*}
d\left(T^{n} x, T^{q} x\right) & >\left(\frac{c}{1-c}\right) \max \left\{d\left(T^{i} x, T^{q} x\right): 0 \leq i<p\right\} \tag{2.2}\\
& \geq \max \left\{d\left(T^{\gamma} x, T^{q} x\right): 0 \leq \gamma<n\right\}
\end{align*}
$$

It now follows from inequality (2.2) that

$$
\begin{align*}
(1-c) d\left(T^{n} x, T^{q} x\right) & >c \max \left\{d\left(T^{i} x, T^{q} x\right): 0 \leq i \leq p\right\} \\
& \geq c \max \left\{d\left(T^{i} x, T^{\gamma} x\right)-d\left(T^{\gamma} x, T^{q} x\right): 0 \leq i \leq p \text { and } 0 \leq \gamma<n\right\} \tag{2.3}\\
& \geq c \max \left\{d\left(T^{i} x, T^{\gamma} x\right)-d\left(T^{n} x, T^{q} x\right): 0 \leq i \leq p \text { and } 0 \leq \gamma<n\right\}
\end{align*}
$$

and so

$$
\begin{equation*}
d\left(T^{n} x, T^{q} x\right)>c \max \left\{d\left(T^{i} x, T^{\gamma} x\right): 0 \leq i \leq p \text { and } 0 \leq \gamma<n\right\} . \tag{2.4}
\end{equation*}
$$

We will now prove that

$$
\begin{equation*}
d\left(T^{n} x, T^{q} x\right)>c \max \left\{d\left(T^{i} x, T^{\gamma} x\right): 0 \leq i, \gamma<n\right\} . \tag{2.5}
\end{equation*}
$$

For, if not so then we have

$$
d\left(T^{n} x, T^{q} x\right) \leq c \max \left\{d\left(T^{i} x, T^{\gamma} x\right): 0 \leq i, \gamma<n\right\}
$$

i.e.,

$$
\begin{equation*}
d\left(T^{n} x, T^{q} x\right) \leq c \max \left\{d\left(T^{i} x, T^{\gamma} x\right): p<i, \gamma<n\right\} . \tag{2.6}
\end{equation*}
$$

In view of inequality (2.4), we can apply inequality (2.1) indefinitely to inequality (2.6), since whenever terms of the form $\mathrm{d}\left(\mathrm{T}^{i} \mathrm{x}, \mathrm{T}^{\gamma} \mathrm{x}\right)$ appear with $0 \leq i \leq \mathrm{p}$, they can be omitted because of inequality (2.4). This means that

$$
d\left(T^{n} x, T^{q} x\right) \leq c^{k} \max \left\{d\left(T^{i} x, T^{\gamma} x\right): p<i, \gamma<n\right\}
$$

for $\mathrm{k}=1,2, \ldots$ and on letting limit k tending to infinity it follows that $\mathrm{d}\left(\mathrm{T}^{n} \mathrm{x}, \mathrm{T}^{q} \mathrm{x}\right)=0$, which gives a contradiction. So inequality (2.5) now follows. However, on using inequality (2.1), we now have

$$
\begin{aligned}
d\left(T^{n} x, T^{q} x\right) \leq & c \max \left\{d\left(T^{\gamma} x, T^{s} x\right), d\left(T^{\gamma} x, T^{\gamma^{\prime}} x\right), d\left(T^{s} x, T^{s^{\prime}} x\right),\left(T^{\gamma^{\prime}} x, T^{s^{\prime}} y\right)\right. \\
& \left.: n-p \leq \gamma, \gamma^{\prime} \leq n \text { and } 0 \leq s, s^{\prime} \leq q\right\} \\
\leq & c \max \left\{d\left(T^{\gamma} x, T^{s} x\right): 0 \leq \gamma, s \leq n\right\},
\end{aligned}
$$

which is impossible, because of inequality (2.5). This contradiction further implies that the sequence $\left\{\mathrm{T}^{n} \mathrm{x}: \mathrm{n}=1,2, \ldots\right\}$ must be bounded.
Now taking

$$
M=\sup \left\{d\left(T^{\gamma} x, T^{s} x\right): \gamma, s=0,1,2, \ldots\right\}<\infty
$$

and then for arbitrary $\epsilon>0$, choosing N such that $\mathrm{c}^{N} \mathrm{M}<\epsilon$, it follows that for $\mathrm{m}, \mathrm{n} \geq N \max \{\mathrm{p}, \mathrm{q}\}$ and on using inequality (2.1) N times we get

$$
d\left(T^{m} x, T^{n} x\right) \leq c^{N} M<\epsilon
$$

Thus the sequence $\left\{\mathrm{T}^{n} \mathrm{x}: \mathrm{n}=1,2, \ldots\right\}$ is a Cauchy sequence in the complete metric space X and so has a limit z in X. Since T is continuous it follows that $T z=z$ and so z is a fixed point of T. The uniqueness of z follows easily from the inequality (2.1). This completes the proof of the Theorem.

Our next generalization goes as follows.
Theorem 2.2. Let T be a mapping on the complete metric space X into itself satisfying the inequality

$$
d\left(T^{p} x, T y\right) \leq c \max \left\{d\left(T^{\gamma} x, T^{s} y\right), d\left(T^{\gamma} x, T^{\gamma^{\prime}} x\right), d(y, T y), d\left(T^{\gamma^{\prime}} x, T y\right): 0 \leq \gamma, \gamma^{\prime} \leq p \text { and } s=0,1\right\}
$$

for all x, y in X where $0 \leq c<1$, for some fixed positive integer p. Then T has a unique fixed point in X.

Proof. Let x be an arbitrary point in X. Then, as in the proof of 2.1, the sequence $\left\{T^{n} x\right\}$ is a Cauchy sequence in the complete metric space X and so has a limit z in X. For $\mathrm{n} \geq \mathrm{p}$, we now have

$$
\left(T^{n} x, T z\right) \leq c \max \left\{d\left(T^{\gamma} x, T^{s} x\right), d\left(T^{\gamma} x, T^{\gamma^{\prime}} x\right), d(z, T z),\left(T^{\gamma^{\prime}} x, T z\right): n-p \leq \gamma, \gamma^{\prime} \leq n a n d s=0,1\right\}
$$

Taking n tends to infinity it follows that

$$
\begin{aligned}
d(z, T z) & \leq c \max \left\{d\left(z, T^{s} z\right): s=0,1\right\} \\
& =c d(z, T z) .
\end{aligned}
$$

Since c <1, we see that z is a fixed point of T . This completes the proof of the theorem.
The following corollary is immediate when $\mathrm{p}=1$.
Corollary 2.3. Let T be a mapping on the complete metric space X into itself satisfying the inequality

$$
d(T x, T y) \leq c \max \{d(x, y), d(x, T x), d(y, T y), d(x, T y), d(y, T x)\}
$$

for all x, y in X, where $0 \leq c<1$. Then T has a unique fixed point in X.
We now note that the condition that T be continuous when $\mathrm{p}, \mathrm{q} \geq 2$ is necessary in Theorem 1.5 This is easily seen by considering X be the closed interval $[0,1]$ with the usual metric. Define a discontinuous mapping T on X by

$$
T x= \begin{cases}1 & \text { if } x=0 \\ \frac{1}{2} x & \text { if } x \neq 0\end{cases}
$$

We then have

$$
d\left(T^{p} x, T^{q} y\right)=\frac{1}{2} d\left(T^{p-1} x, T^{q-1} y\right)
$$

for all x, y in X and so T is a quasi contraction with $c=\frac{1}{2}$. T however has no fixed point. We now prove a fixed point theorem on a compact metric space.

Theorem 2.4. Let T be a continuous mapping on the compact metric space X into itself satisfying the inequality

$$
\begin{gathered}
d\left(T^{p} x, T^{q} y\right)<\max \left\{d\left(T^{\gamma} x, T^{s} y\right), d\left(T^{\gamma} x, T^{\gamma^{\prime}} x\right), d\left(T^{s} y, T^{s^{\prime}} y\right), d\left(T^{\gamma^{\prime}} x, T^{s^{\prime}} y\right)\right. \\
\left.: 0 \leq \gamma, \gamma^{\prime} \leq p \text { and } 0 \leq s, s^{\prime} \leq q\right\}
\end{gathered}
$$

for all x, y in X for which the right hand side of the inequality is positive. Then T has a unique fixed point in X.

Proof. Suppose first of all that T is a quasi contraction. The result then follows from Theorem 2.1 If T is not a quasi- contraction and if $\left\{\mathrm{c}_{n}: \mathrm{n}=1,2, \ldots\right\}$ is a monotonically increasing sequence of numbers converging to 1 , then there must exist sequences. $\left\{\mathrm{x}_{n}\right\}$ and $\left\{\mathrm{y}_{n}\right\}$ in X such that

$$
\begin{gathered}
d\left(T^{p} x_{n}, T^{q} y_{n}\right)>c_{n} \max \left\{d\left(T^{\gamma} x_{n}, T^{s} y_{n}\right), d\left(T^{\gamma} x_{n}, T^{\gamma^{\prime}} x_{n}\right), d\left(T^{s} y_{n}, T^{s^{\prime}} y_{n}\right), d\left(T^{\gamma^{\prime}} x_{n}, T^{s^{\prime}} y_{n}\right):\right. \\
\left.0 \leq \gamma, \gamma^{\prime} \leq \operatorname{pand} 0 \leq s, s^{\prime} \leq q\right\}
\end{gathered}
$$

for $\mathrm{n}=1,2, \ldots$. Since X is compact, there exist subsequences $\left\{\mathrm{x}_{n k}: \mathrm{k}=1,2, ..\right\}$ and $\left\{\mathrm{y}_{n k}: \mathrm{k}=1\right.$, $2, .$.$\} of \left\{\mathrm{x}_{n}\right\}$ and $\left\{\mathrm{y}_{n}\right\}$ converging to x and y , respectively. We then have

$$
\begin{gathered}
d\left(T^{p} x_{n k}, T^{q} y_{n k}\right)>c_{n k} \max \left\{d\left(T^{\gamma} x_{n k}, T^{s} y_{n k}\right), d\left(T^{\gamma} x_{n k}, T^{\gamma^{\prime}} x_{n k}\right), d\left(T^{s} y_{n k}, T^{s^{\prime}} y_{n k}\right), d\left(T^{\gamma^{\prime}} x_{n k}, T^{s^{\prime}} y_{n k}\right):\right. \\
\left.0 \leq \gamma, \gamma^{\prime} \leq \operatorname{pand} 0 \leq s, s^{\prime} \leq q\right\}
\end{gathered}
$$

for $\mathrm{k}=1,2, \ldots$. Since T is continuous, taking limit as k tends to infinity, we get

$$
\begin{gathered}
d\left(T^{p} x, T^{q} y\right) \geq \max \left\{d\left(T^{\gamma} x, T^{s} y\right), d\left(T^{\gamma} x, T^{\gamma^{\prime}} x\right), d\left(T^{s} y, T^{s^{\prime}} y\right), d\left(T^{\gamma^{\prime}} x, T^{s^{\prime}} y\right):\right. \\
\left.0 \leq \gamma, \gamma^{\prime} \leq \operatorname{pand} 0 \leq s, s^{\prime} \leq q\right\}
\end{gathered}
$$

which leads to a contradiction unless $\mathrm{x}=\mathrm{y}=\mathrm{Tx}$. Thus x is a fixed point of T . The uniqueness of x follows easily. This completes the proof of the theorem.

When $\mathrm{p}=\mathrm{q}=1$, we have the following corollary:
Corollary 2.5. Let T be a continuous mapping of the compact metric space X into itself satisfying the inequality

$$
d(T x, T y)<\max \{d(x, y), d(x, T x), d(y, T y), d(x, T y), d(y, T x)\}
$$

for all x, y in X for which the right hand side of the inequality is positive. Then T has an unique fixed point.

3. A fixed point result for generalized contraction

In this section we prove common fixed point theorems with the help of sequences which are not necessarily obtained as a sequence of iterates of mappings under consideration. The mappings are asymptotically regular of certain nature mentioned below. The result obtained generalizes a result due to Hardy and Roger [3].

Definition 3.1. Let A and B be two self mappings on X and $\left\{\mathrm{x}_{n}\right\}$ a sequence in X . Then the sequence $\left\{\mathrm{x}_{n}\right\}$ is said to be asymptotically A - regular with respect to B if

$$
L t_{n \rightarrow \infty} d\left(B x_{n}, A x_{n}\right)=0, \text { when B is identity map. }
$$

Definition 3.2. Let f and g be two self mappings on X . Then the pair $\{\mathrm{f}, \mathrm{g}\}$ is said to be a weakly commuting pair if $d(f g x, g f x) \leq d(g x, f x)$ for all $\mathrm{x} \in \mathrm{X}$.

Theorem 3.3. Let (X, d) be a complete metric space. Let A, B, S, T be four self mappings of X satisfying the following conditions:
(a) $d(S x, T y) \leq a_{1} d(S x, A x)+a_{2} d(T y, B y)+a_{3} d(S x, B y)+a_{4} d(T y, A x)+a_{5} d(A x, B y)$
for all $x, y \in X$ where $a_{i}(i=1,2,3,4,5)$ are non negative real and $\max \left\{\left(a_{2}+a_{4}\right),\left(a_{3}+a_{4}+a_{5}\right)\right\}<$ 1,
(b) A and B are continuous,
(c) $\{A, S\}$ and $\{B, T\}$ are weakly commuting pairs,
(d) there exists a sequence which is asymptotically S - regular as well as T-regular with respect to A and B.

Then A, B, S, T have a unique common fixed point.
Proof : Let $\left\{\mathrm{x}_{n}\right\}$ be a sequence as described in (b). Then using (a) we get

$$
\begin{aligned}
d\left(A x_{n}, B x_{m}\right) \leq & d\left(A x_{n}, S x_{n}\right)+d\left(S x_{n}, T x_{m}\right)+d\left(T x_{m}, B x_{m}\right) \\
\leq & d\left(A x_{n}, S x_{n}\right)+a_{1} d\left(S x_{n}, A x_{n}\right)+a_{2} d\left(T x_{m}, B x_{m}\right)+a_{3} d\left(S x_{n}, B x_{m}\right) \\
& +a_{4} d\left(T x_{m}, A x_{n}\right)+a_{5} d\left(A x_{n}, B x_{m}\right)+d\left(T x_{m}, B x_{m}\right) \\
\leq & d\left(A x_{n}, S x_{n}\right)+a_{1} d\left(S x_{n}, A x_{n}\right)+a_{2} d\left(T x_{m}, B x_{m}\right)+a_{3}\left[d\left(S x_{n}, A x_{n}\right)+d\left(A x_{n}, B x_{m}\right)\right] \\
& +a_{4}\left[d\left(T x_{m}, B x_{m}\right)+d\left(B x_{m}, A x_{n}\right)\right]+a_{5} d\left(A x_{n}, B x_{m}\right)+d\left(T x_{m}, B x_{m}\right)
\end{aligned}
$$

Therefore, $\mathrm{d}\left(\mathrm{Ax}_{n}, \mathrm{Bx}_{m}\right) \leq \frac{1+a_{1}+a_{3}}{1-a_{3}-a_{4}-a_{5}} \mathrm{~d}\left(\mathrm{Ax}_{n}, \mathrm{Sx}_{n}\right)+\frac{1+a_{2}+a_{4}}{1-a_{3}-a_{4}-a_{5}} \mathrm{~d}\left(\mathrm{Tx}_{m}, \mathrm{Bx}_{m}\right)$. This shows that $\left\{A x_{n}\right\}$ is a Cauchy sequence. Let $\lim _{n} \rightarrow \infty A x_{n}=z=\lim _{n} \rightarrow \infty B x_{m}$. Then it follows that $\lim _{n} \rightarrow \infty S x_{n}=$ $z=\lim _{n} \rightarrow \infty T x_{m}$. By virtue of the continuity of A and B , we find that

$$
A^{2} x_{n} \rightarrow A z, A S x_{n} \rightarrow A z a n d B^{2} x_{m} \rightarrow B z, B T x_{m} \rightarrow B z
$$

We shall show that

$$
S A x_{n} \rightarrow A z \text { and } T B x_{m} \rightarrow B z .
$$

For this, consider the inequality,

$$
\begin{aligned}
d\left(S A x_{n}, A z\right) & \leq d\left(S A x_{n}, A S x_{n}\right)+d\left(A S x_{n}, A z\right) \\
& \leq d\left(A x_{n}, S x_{n}\right)+d\left(A S x_{n}, A z\right),
\end{aligned}
$$

which shows that $\mathrm{SAx}_{n} \rightarrow \mathrm{Az}$.
Similarly,

$$
d\left(T B x_{m}, B z\right) \leq d\left(T B x_{m}, B T x_{m}\right)+d\left(B T x_{m}, B z\right) \leq d\left(B x, T x_{m}\right)+d\left(B T x_{m}, B z\right)
$$

which shows that $\mathrm{TBx}_{m} \rightarrow \mathrm{Bz}$.
Now,

$$
\begin{aligned}
d(A z, T z) \leq & d\left(A z, S A x_{n}\right)+d\left(S A x_{n}, T z\right) \\
\leq & d\left(A z, S A x_{n}\right)+a_{1} d\left(S A x_{n}, A^{2} x_{n}\right)+a_{2} d(T z, A z) \\
& +a_{3} d\left(S A x_{n}, A z\right)+a_{4} d\left(T z, A^{2} x_{n}\right)+a_{5} d\left(A^{2} x_{n}, A z\right) .
\end{aligned}
$$

Taking limit as n tending to infinity, we get

$$
d(A z, T z) \leq\left(a_{2}+a_{4}\right) d(A z, T z)
$$

and hence $\mathrm{Az}=\mathrm{Tz}$. Similarly we can show that $\mathrm{Bz}=\mathrm{Sz}$.
Further

$$
\begin{aligned}
d\left(S A x_{n}, T B x_{m}\right) \leq & a_{1} d\left(S A x_{n}, A^{2} x_{n}\right)+a_{2} d\left(T B x_{m}, B^{2} x_{m}\right)+a_{3} d\left(S A x_{n}, B^{2} x_{m}\right) \\
& +a_{4} d\left(T B x_{m}, A^{2} x_{n}\right)+a_{5} d\left(A^{2} x_{n}, B^{2} x_{m}\right) .
\end{aligned}
$$

On taking limits we have

$$
\begin{aligned}
d(A z, B z) & \leq a_{1} d(A z, A z)+a_{2} d(B z, B z)+a_{3} d(A z, B z)+a_{4} d(B z, A z)+a_{5} d(A z, B z) \\
& \leq\left(a_{3}+a_{4}+a_{5}\right) d(A z, B z)
\end{aligned}
$$

i.e. $\left(1-a_{3}-a_{4}-a_{5}\right) d(A z, B z) \leq 0$. So, $A z=B z$.

Hence $A z=B z=S z=T z$.
Now consider,

$$
d\left(S x_{n}, T z\right) \leq a_{1} d\left(S x_{n}, A x_{n}\right)+a_{2} d(T z, B z)+a_{3} d\left(S x_{n}, B z\right)+a_{4} d\left(T z, A x_{n}\right)+a_{5} d\left(A x_{n}, B z\right)
$$

As limit $\mathrm{n} \rightarrow \infty$, we have

$$
d(z, T z) \leq a_{1} d(z, z)+a_{2} d(T z, T z)+a_{3} d(z, T z)+a_{4} d(T z, z)+a_{5} d(z, T z)
$$

or

$$
d(z, T z) \leq\left(a_{3}+a_{4}+a_{5}\right) d(z, T z)<d(z, T z),
$$

which implies that $\mathrm{z}=\mathrm{Tz}$. Thus z is a common fixed points of $\mathrm{A}, \mathrm{B}, \mathrm{S}$ and T .
In order to prove the uniqueness of common fixed point. Let z_{1} and z_{2} be any two distinct common fixed points of A, B, S and T. Then

$$
\begin{aligned}
d\left(z_{1}, z_{2}\right)= & d\left(S z_{1}, T z_{2}\right) \leq d\left(S z_{1}, A z_{1}\right)+a_{2} d\left(T z_{2}, B z_{2}\right)+a_{3} d\left(S z_{1}, B z_{2}\right) \\
& +a_{4} d\left(T z_{2}, A z_{1}\right)+a_{5} d\left(A z_{1}, B z_{2}\right) \\
= & \left(a_{3}+a_{4}+a_{5}\right) d\left(z_{1}, z_{2}\right)<d\left(z_{1}, z_{2}\right) .
\end{aligned}
$$

Therefore, $\mathrm{z}_{1}=\mathrm{z}_{2}$. This completes the proof.

References

[1] B. Fisher, Quasi contractions on metric spaces, Pro. Amer. Math. Soc., 75 (1979), 321-325. $1.1,1.2$
[2] K. Goebel, W. A. Kirk, T. N. Shimi, A fixed point theorem in uniformly convex spaces, Bull. Math. Ital., 7 (1973), 67-75.
[3] D. E. Hardy, T. D. Rogers, A generalization of a fixed point theorem of Reich, Canad. Math. Bull., 16 (1973), 201-206. 3
[4] G. Jungck, Commuting mappings and fixed points, Amer. Math. Monthly, 83 (1976), 261-263.
[5] R. N. Mukherjee, Common fixed points of some nonlinear mappings, Ind. J. Pure appl. Math., 12 (1981), 930-933.
[6] B. E. Rhoades, A comparison of various definitions of contractive maps", Trans. Amer. Math. Soc., 226 (1977), 257-290.

[^0]: *Corresponding author
 Email addresses: amalendu_choudhury@yahoo.com (Amalendu Choudhury), tsom.apm@iitbhu.ac.in (T. Som)

