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Abstract

In this paper, we investigate the applications of two different quadrature schemes that is
repeated trapezoidal (RT) and repeated modified trapezoidal (RMT) schemes via Arithmetic
Mean iterative method to solve second kind linear Fredholm integral equations. Furthermore,
the derivation and implementation of the proposed method are also included. Numerical tests
and comparisons are given to illustrate the effectiveness of the proposed method.
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1. INTRODUCTION

Generally, second kind linear integral equations of Fredholm type in the generic form can be
defined as follows
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2y(x)+ L K(x,t)y(t)dt = f(x), T=[a,b] 1 =0 (1)

where the parameter A, kernel K € L2 (F X F) and freeterm f e L(F) are given, and Yy € L(F)

is the unknown function to be determined. The kernel function K(X,t) is assumed to be
absolutely integrable and satisfy other properties that are sufficient to imply the Fredholm
alternative theorem. Meanwhile, Eq. (1) also can be rewrite in the equivalent operator form

(A+r)y=f. 2

Theorem (Fredholm Alternative) [3]
Let ¥ be aBanach space and let x: y — ¥ be compact. Then the equation (/1 + K‘)y =f,A=0

has a unique solution X € y if and only if the homogeneous equation (/'t + K)Z =0 has only the
1-1

trivial solutionz=0. In such a case, the operator A+kx:y—>y has a bounded
onto

inverse (ﬂ + K)fl .

Definition (Compact operators) [3]
Let y and Y be normed vector space and let k. ¥ — Y be linear. Then x is compact if the

set {KX|||X|| XSl} has compact closure in Y. This is equivalent to saying that for every

bounded sequence {Xn } C x, the sequences {IO(n} has a subsequence that is convergent to some

pointin Y . Compact operators are also called completely continuous operators.
In many application areas, numerical approaches were used widely to solve Fredholm integral
equations. By solving Eq. (2) numerically, we either seek to determine an approximation

solution in a chosen finite dimensional space V, by a projection method [5, 6, 8, 11, 14]

(A+Px)y, =P, f (3)
where y, €V, and P, :C —V, is a projection operator, or use the quadrature method
(Al +x,)y, = f (4)

where «, approximates x and is obtained by discretization of K by an N -point quadrature

method; see [9, 10, 12, 13, 18]. Such discretizations of integral equations lead to dense linear
systems and can be prohibitively expensive to solve asn, the order of the linear system of linear
algebraic equations increases. Thus, iterative methods are the natural options for efficient
solutions.

Consequently, two-stage iterative method also called as inner and outer iteration schemes
have been proposed widely to be one of the feasible and successful classes of numerical
algorithms for solving any linear system. Actually, there are many two-stage iterative methods
can be considered such as the Alternating Group Explicit (AGE) [7], Iterative Alternating
Decomposition Explicit (IADE) [19], Reduced Iterative Alternating Decomposition Explicit
(RIADE) [20], Block Jacobi [2] and Arithmetic Mean (AM) [17] methods. However, in this paper,
we examined the applications of the Arithmetic Mean method with two different quadrature
methods in solving second kind linear Fredholm integral equations.
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The outline of this paper is organized in following way. In Section 2, the formulation of the
quadrature approximation equations based on repeated trapezoidal (RT) and repeated
modified trapezoidal (RMT) methods will be elaborated. The latter section of this paper will
discuss the formulations of the AM method, and some numerical results will be shown in fourth
section to assert the performance of the iterative methods. Finally, Section 5 contains some
conclusions and directions of the future works.

2. QUADRATURE APPROXIMATION EQUATIONS

As explained in the previous section, a discretization scheme based on method of quadrature
was used to construct an approximation equation of an integral equation by approximating the
integral to finite sums. To facilitate in formulating the approximation equations for linear
Fredholm equation of the second kind, further discussion will be restricted onto repeated
trapezoidal (RT) and repeated modified trapezoidal (RMT) methods, which are based on
interpolation formulas. In next subsections, application of the both schemes to discretize the
Fredholm integral equations of the second kind will be explained.

2.1 Repeated Trapezoidal

The trapezoidal method is one of numerical integration methods derived by integrating the
linear interpolation formula with equally spaced data points. Trapezoidal method for

b
approximating definite integral L y(t)dt can be defined as follows

2030 = (v(a)+ ylb) + 2, () -

and its repeated formula can be shown as

b h n-1 h
[ y(t)dt=2 y(a)+h}, y(t j)+§y(b)+€n(y) (6)
j=1
where the constant step size, h is defined as
h= H . (7)
n

n,t; and gn(y) are the number of subintervals in the interval [a, b], abscissas of the partition

points of the integration interval [a,b] and truncation error respectively. By applying Eq. (3)
into Eq. (1) and neglecting the error, &, (y) a system of linear algebraic equations can be formed

for approximation values of y(x) at the nodes X, X,..., X,,. Therefore, the repeated trapezoidal

approximation equations for Eq. (1) can be shown as follows
h < h .
AYi +{§ KioYo + thi,jyj +5Ki,nynJ =f,,i=012,--n (8)
=1
Further discussions on RT method to solve Fredholm integral equations can be found in [3, 4].

2.2 Repeated Modified Trapezoidal
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b
Besides trapezoidal method, definite integrals L y(t)dt can be also approximated by using the

modified trapezoidal method, obtained based on the Hermite interpolation [21]. Hermite
interpolation is a method closely related to the Newton divided difference interpolation that
considers derivatives at data points. The formula for the method is defined as follows

[Eyt="1(v(@)+ o)+ (v @)+ y (0)+ () ©)

Then, the RMT formula is as follows
h2 - -
[y(t)at ——y +hZ ylt, ) o “(y'(@-y ©)+e(y) (10)
In order to discretize Eq. (1) using RMT method, conditions of K(X,t) and f(X) must be
differentiable with respect to their variables should be satisfied. Meanwhile, two cases which

oK (x,1)

P exist or not, also need to be considered. Formulation for both cases
X

are whether

explained in [18]. Before further clarification, the following notation will be used for simplicity.
oK (x;t;)
i T
aK(x,.t,)
ij = 5—)(,

oK, t;)
" axa

Y=y (x)

fi=f (Xi)
By applying the formula for RMT in Eq. (10) into Eqg. (1), the approximation equations for both
cases shown as follows

K (x,1)
oxot

Case 1: The partial derivative L; ; = does not exists

n-1 2 2

+A0y0+hZK,JyJ+Bnyn h KioYo — h—Ki,ny'n:fi, i=01--,n=1n

. h S h .

y0+EH0,0y0+hZH0,jyj+§H0,nyn: f, (11)
=L

. h IS h .

Yn +_Hn0y0+hZHnjyj +_Hnnyn = fn
2 " =G
Case 2: The partial derivative L; ; = aK(X’t) exists
' oxot
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n-1 h2 . h2 ' )
Yi +A1,oYo +hz Ki,ij' + Bi,nyn +EKi,OyO _EKi,nyn = fi’ 1=01--,n=1n
j=1
i n-1 h2 ) h2 ‘ .
Yo +CooYo +hZHO,jyj +Dg0Yn +EHO,OyO_EHO,nyn = f, (12)
j=1
i n-1 h2 : h2 ' '
yn +Cn,0y0 +hZHn,jyj +Dn,nyn +EHn,0y0 _EHn,nyn = fn
j=1
where
h h?
A,j :EKi,j+E‘Ji,j
2
B, . :EKi ; —h—.]i ;
V) 2 )] 12 ']
h h?
G ZEHi,j—i_ELi,j
2
D, . :hHi , —h—Li :
1) 2 ') 12 ')

From Egs. (5), (8) and (9), it is obvious that discretization of second kind Fredholm integral
equations using RT or RMT method yields a system of linear equations as follows

My=f (13)
where the coefficient matrix M is a dense matrix. Meanwhile, f and Yy are the right hand side

vector and unknown vector to be determined respectively.

3. FORMULATION OF ARITHMETIC MEAN METHOD

As afore-mentioned, AM methods are one of the two-stage iterative methods and the iterative
process involves of solving two independent systems such as y ! and y 2, To develop the

formulation of AM method, express the coefficient matrix A as the matrix sum

A=L+D+U (14)
where L, Dand U are the strictly lower triangular, diagonal and strictly upper triangular
matrices respectively. Thus, by adding positive acceleration parameter, @ the general scheme
for AM method is defined by
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(D+aol) y'=(1-0)D-0U)y“+of

(D+aVU)y*=(1-0)D-0l)y“+of (15)

(k+1>_1[1 zj
=3y

where y(0) is an initial vector approximation to the solution and 0 <w < 2.

The AM method requires a slight additional computational effort of the sum of two matrices at
each iterationk , but its rate of convergence is relatively insensitive to the exact choice of the
parameter @ [17]. Practically, the value of @ will be determined by implementing some
computer programs and then choose one value of @, where its number of iterations is the
smallest. The AM algorithm is explicitly performed by using all equations at level (1) and (2)
alternatively until the specified convergence criterion is satisfied. By determining values of
matricesL, Dand U as stated in Eq. (14), the general algorithm for AM with RT and RMT
methods to solve problem (1) would be generally described in Algorithms 1, 2 and 3. Generally,
the basic idea for the convergence analysis of the AM method has been proved by [17].

4. NUMERICAL EXPERIMENTS

In order to compare the performances of the iterative methods described in the previous
section, several numerical tests were carried out on the following both Fredholm integral
equations.

Example 1 [22]
Consider the Fredholm integral equation of the second kind

y(x)—j:(4xt—x2)y(t)dt: X, 0<x<1 (16)

and the exact solution is given by
y(X) = 24x—9%°.

Example 2 [16]
Consider the Fredholm integral equation of the second kind

ik
y(x)—j()(x 2rt?)y(t)dt =x° —5x° + x+10, 0< x <1 (17)

with the exact solution

1045

y(x) = x° —5x3+2—8x2 Fx4 218

84

For comparison, the Gauss-Seidel (GS) iterative method acts as control method of
numerical results. Three criteria will be considered in comparison for GS with RT (GS-RT), GS
with RMT (GS-RMT), AM with RT (AM-RT) and AM with RMT (AM-RMT) methods that is
number of iterations, execution time and maximum absolute error. Throughout the simulations,
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the convergence test considered the tolerance error, &£ =107, In this paper, interval [a, b] will
be uniformly divided into n=2",m>2 and discrete set of points be given as x, =a+ih.

Results of numerical simulations, which were obtained from implementations of the iterative
methods for Examples 1 and 2, have been recorded in Tables 1 and 2 respectively. Meanwhile,
reduction percentage of the execution time for the GS-RT, AM-RT and AM-RMT methods
compared with GS-RMT method have been summarized in Table 3.

Table 1. Comparison of a number of iterations, execution time and maximum absolute error for
the iterative methods at optimum value of @ (Example 1)

Number of iterations

h n
Methods 512 1024 2048 4096 8192
GS-RT 194 194 195 195 195
GS-RMT 198 199 199 199 199
~ AM-RT 84 84 84 84 84
AM-RMT 46 46 46 46 46
Execution time (seconds)
n
Methods 512 1024 2048 4096 8192
GS-RT 2.62 10.77 38.77 145.01 570.58
GS-RMT 2.91 14.02 48.83 177.01 644.35
" AM-RT 203 780 3105 123.06 49149
AM-RMT 1.92 7.42 27.45 109.38 402.16
Maximum absolute error
Methods n
512 1024 2048 4096 8192
GS-RT 46922 E-4 1.1730 E-4 2.9325E-5 7.3307 E-6 1.8321E-6
GS-RMT 3.5954 E-7 4.5208 E-8 6.0171 E-9 1.1272E-9 5.1823 E-10
~ AM-RT  4.6922E-4 11730E-4 29325E-5 73311E-6 18326E-6
AM-RMT 3.5913 E-7 4.4840 E-8 5.6402E-9 7.4613E-10 1.3497 E-10

Table 2. Comparison of a number of iterations, execution time and maximum absolute error for
the iterative methods at optimum value of @ (Example 2)

Number of iterations

n
Methods 512 1024 2048 4096 8192
GS-RT 56 56 56 56 56
GS-RMT 57 57 57 57 57
~ AM-RT 32 32 32 32 32
AM-RMT 25 26 26 26 26

Execution time (seconds)




Mohana Sundaram Muthuvalu, Jumat Sulaiman / TIMCS Vol .1 No.3 (2010) 174-186

Methods n
512 1024 2048 4096 8192
GS-RT 0.89 3.47 17.06 55.85 189.98
GS-RMT 0.95 3.96 20.44 70.89 242.87
~ AM-RT 061 256 939 3817 16744
AM-RMT 0.55 2.45 9.06 36.88 155.23
Maximum absolute error
Methods n
512 1024 2048 4096 8192
GS-RT 4.7770 E-4 1.1942 E-4 2.9856 E-5 7.4639 E-6 1.8659 E-6
GS-RMT 8.6136 E-7 1.0751 E-7 1.3495 E-8 1.7567 E-9  2.9065 E-10
"~ AM-RT  4.7770E-4 1.1942E-4 29856E-5 7.4639E-6 18659E-6
AM-RMT 8.6130 E-7 1.0744 E-7 1.3422 E-8 1.6832E-9 2.1709E-10

Table 3. Reduction percentage of the execution time for the GS-RT, AM-RT and AM-RMT
methods compared with GS-RMT method

Methods Example 1 Example 2
GS-RT 9.96 - 23.19% 6.31-21.78%
AM-RT 23.72 - 44.37% 31.05-54.07%

AM-RMT 34.02 - 47.08% 36.08 - 55.68%

5. CONCLUSIONS

In the previous section, it has shown that the quadrature approximation equations based on
repeated trapezoidal and repeated modified trapezoidal methods can easily generate a system
of linear equations. From the Egs. (8), (11) and (12), it can be found that approximation
equations based on RT method involve (n +1) equations and (n + 3) equations for RMT method.

Through numerical results obtained in Tables 1 and 2, it clearly shows that by applying the AM
method can reduce number of iterations compared to the GS method for both discretization
methods. In terms of execution time, GS-RT, AM-RT and AM-RMT methods are faster compared
to GS-RMT method (refer Table 3). Through the observation from the results obtained, it shows
that RMT method is more accurate than the RT method. Overall, the numerical results have
shown that the AM-RMT method is more superior compared to the GS-RT, GS-RMT and AM-RT
methods. For future works, this study will be extended to investigate the applications of the
complexity reduction techniques [1, 15] in solving Fredholm integral equations.
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Algorithm 1. AM with RT method

i) Level (1)

Calculate
h h h .
1-o 1+2K —a)hZK,Jy] K.y +of, 1+EKU =0
yh (1—a))(1+2+<i,ijyi‘“—“’2h ,Oyo“—a)h2|<,,yJ k“+a)f]/[l+2ij Ji=n
(1_5")(1*‘hKi,i)yi(k)—Q)ThKi,o)/o(M)“"hZKiJ‘)’;'(M)_“’hZKi,jYJ(k a)h nnyn +wfj/(1+hKi,i) d=1-n-1
=1 j=i+l

ii) Level (2)

Calculate
(1- m)(1+hK ] —thK, y; k”—‘”—hK,nynk*1 of, [1+hK“) i=0
2 17 2 2 "
n-1
y2 (1—60)(1+hK”in(k)—‘"hKioyo‘”—wthijy,.(k)mfi (1+hK”j i=n
2 " 2 " =i 2"
i-1 n-1
(1—a))(1+hKivi)yi(k)—%hKivoyo(k)—a)hz K,y -on Y Ky, ——K,nyn (kst) +a)fi]/(l+hK“) Ji=1--n-1
= j=i+l

iii)For i=0,1,---,n=1,n
Calculate

(k+1

y! )<—%(yﬁ+yi2)
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Algorithm 2. AM with RMT (Case 1) method

i) Level (1)

Calculate
(k) S (k) « oh? )
(1_w)(1+Ai,i)yi _a)hZKi,jyj -oB; .y, |oyo
j:]- 12 =
, 1+A; =0
+a)h KinYH(k) of
12
n-1
(1—a))(1+ Bii)yi(k)_a)AiOyn(k+l)_wthijyj(kﬂ) o’ |oy0
' ’ = 12 .
, ! (1+ Bi,i) ,Ji=n
+wh Kinyln(k) o f,
12
Yi < . ,
- o)1+hK,, )y —a)Amyn“—a)hZK,JyJ“—a;hZK,JyJ
) ) il (L+hK,,) ,i=1--n-1
« oh (k) @h (k)
B, - i +——K, +of
@ |,nyn 12 |,Oy0 12 |,nyn @ i
(1 )-(k) a)hH (k+1) hHH (k+1) a)h (k+1) £
— )Y, _7 0,00 @ Z 0,iYi - 2 nyn e 0
j=1
n-1
(1_a))yn(k)_w_th Oyo(k+l)_ thnjyj(k+1)_w_thﬂ n(k+1)+a)fn
2 =1 2
ii) Level (2)
Calculate
n-1
(1_w)(1+Ai,i)yi(k)_wthnJyj(kﬂ) annyn(kﬂ)_wh K.o o(k+l)
2 = 12 L+A,) i=0
+a)h Kin n(k+1)+ fi
12
n-1
(1-(0)(1+ Bll)yi(k)_WAi Oyn(k)_G)hZKljyj(k) ﬂKlO 0(k+1)
= 12 .
2 +8,) Ji=n
+a)h K. n(k+1) :
12
yi2<_ i1 n-1 .
(-o)L+hK, )y oAy, —ohY K,y —oh 3 K, v,
= = 1+hK,;) ,i=1-n-1
_wB y<k+1>_a>h2 (1), oh? GO ot |
inJn 12 i,0J0 12 inJn i
) @h nt wh
(1_w)yo _THO,OYO(k)_C‘thHo,ij‘(k)_ 5 Onyn +C‘)f
=1
(k) @h ot wh
(1_a))yn - 2 Hn,OyO(k)_a)hzHn,jyj(k)_THn,nyn(k fn
=1
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iii)For 1=0,1,---,n=1,n

Calculate
1
k+1 1 2
v e y)
Algorithm 3. AM with RMT (Case 2) method
i) Level (1)
Calculate
n-1 2
(1—a))(1+ A )Yi(k) _th Ki jyj(k) —wB nyn(k) ol Ki oy;)(k)
' =i ’ 12 " hin) :
0, 1+ A; =0
+wl—2Kivny'n(k)+co f,
n-1 2
(l—a))(1+ Bi )yi(k) —oA oyn(kﬂ) _a’hz Ki iyj(kﬂ) _ﬂ Ki nyl’(k)
' ' j=1 ' 12 ' ( .
o2 1+ Bu) Jd=n
+ a;_z Kin y;1(k) tof
i-1 n-1

(1_ a))(l"' hKi,i )yi(k) - Ai,an(k+l) - a)hz Ki,j y]'(k+1) -oh Z Ki,j y]'(k)

y! ) .- = (L+hK,) i=L--n-1
wh (k) wh (k)
-—@ Bi,nyn(k) BETS KioYo +? KinYo +of

h? (®) X S &
(1_60{“12'_'0,0]3’0 —0Cy0y Y —ohy Hy
=1

i

) oh? (k) :
_a)DO,nyn(k 1)—i_?HO,nyn +(0f0

hZ (k) " n-1 .
(1—60 l_iHn,n Yn _a)cn,oyo(k & _a)hz‘,Hn,jyj(k & 2
12 ~ ( h j

i

2
k1) @h Hnoyg(m)m £

_a)Dn,nyn 12 , n

ii) Level (2)
Calculate
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n-1 2
(1_0))(1"‘ A )Yi(k) _a)hz Ki jyj(kﬂ) -wB; nyn(kﬂ) _oh K oya(k+1)
| A I ba,)
. 1+A,)  i=0
+a;_2 in ll1(k+l)+a)fi
= wh?  (k+1)
(1_w)(1+Bi,i)yi(k)_a)A,Oyn(k)_thKi,jyj(k)_? i.0Yo
i _
e (1+ Bi,i) Jd=n
+a12 Ki,ny;(kﬂ) of
i1 n-1
(1_w)(1+hKi‘i)yi(k)_a)Ai,Oyn(k)_wthi,jyj(k)_whzKi,jyj(kﬂ)
yi ¥ ; = = (L+hK,) ,i=1--n-1
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