Polyharmonic functions with negative coefficients

K. Al-Shaqsia,*, R. Al-Khalb

aDepartment of Information Technology, Nizwa College of Technology, Ministry of Manpower, Sultanate of Oman.
bDepartment of Mathematics, Sciences College, University of Dammam, Dammam, Saudi Arabia.

Abstract

A $2p$ times continuously differentiable complex-valued mapping $F = u + iv$ in a domain $D \subset \mathbb{C}$ is polyharmonic if F satisfies the polyharmonic equation $\Delta \cdots \Delta F = 0$, where $p \in \mathbb{N}^+$ and Δ represents the complex Laplacian operator. The main aim of this paper is to introduce a subclasses of polyharmonic mappings. Coefficient conditions, distortion bounds, extreme points, of the subclasses are obtained. ©2017 All rights reserved.

Keywords: Univalent functions, polyharmonic mappings, extreme points.

2010 MSC: 30C45, 30C50.

1. Introduction

Let A denote the class of functions of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n,$$

which are analytic in the open unite disk $U = \{z : z \in \mathbb{C} \text{ and } |z| < 1\}$. Also let S denote the subclasses of A consisting of functions which are univalent in U. A continuous mapping $f = u + iv$ is a complex-valued harmonic mapping in a domain $D \subset \mathbb{C}$ if both u and v are real harmonic in D, i.e., $\Delta u = \Delta v = 0$, where Δ is the complex Laplacian operator

$$\Delta = 4 \frac{\partial^2}{\partial z \partial \bar{z}} := \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}.$$

In any simply connected domain $D \subset \mathbb{C}$ we can write $f = h + \bar{g}$, where h and g are analytic in D. We call h the analytic part and g the co-analytic part of f. A necessary and sufficient condition for f to be locally univalent and sense-preserving in D is that $|h'(z)| > |g'(z)|$ for all $z \in D$. See Clunie and Sheil-Small [2].

*Corresponding author

Email addresses: khalifa.alshaqsi@nct.edu.om (K. Al-Shaqsi), ralkhal@uod.edu.sa (R. Al-Khal)

doi:10.22436/jmcs.017.04.01

Received 2016-02-16
Denote by \mathcal{H} the class of functions $f = h + \overline{g}$ that are harmonic univalent and sense-preserving in the unit disk $U = \{z : |z| < 1\}$ for which $f(0) = h(0) = f_z(0) - 1 = 0$. For $f = h + \overline{g} \in \mathcal{SH}$ we may express the analytic functions h and g as

$$h(z) = z + \sum_{n=2}^{\infty} a_n z^n, \quad g(z) = \sum_{n=1}^{\infty} b_n z^n, \quad |b_1| < 1.$$

Observe that \mathcal{H} reduces to S, the class of normalized univalent analytic functions, if the co-analytic part of f is zero. Denote by \mathcal{HS}^* and \mathcal{HC} the subclasses of \mathcal{HS} consisting of functions f that map U onto starlike and convex domain, respectively.

In 1984 Clunie and Sheil-Small [2] investigated the class \mathcal{H} as well as its geometric subclasses and obtained some coefficient bounds. Since then, there has been several related papers on \mathcal{H} and its subclasses such that Silverman [6], Silverman and Silvia [7], and Jahangiri [3] studied the harmonic univalent functions.

2. Preliminaries

A continuous complex-valued mapping F in D is biharmonic if the Laplacian of F is harmonic, i.e., F satisfies the equation $\Delta(\Delta F) = 0$. It can be shown that in a simply connected domain D, every biharmonic mapping has the representation

$$F(z) = G_1(z) + |z|^2 G_2(z), \quad (2.1)$$

where both G_1 and G_2 are harmonic in D.

More generally, a complex-valued mapping F of a domain D is called polyharmonic (or p-harmonic) if F satisfies the equation $\Delta^p F = \Delta(\Delta^{p-1} F) = 0$ for $p \in \mathbb{N}^+$. In a simply connected domain, a mapping F is polyharmonic if and only if F has the following representation:

$$F(z) = H(z) + \overline{G(z)} = \sum_{k=1}^{p} |z|^{2(k-1)} J_{p-k+1}(z), \quad (2.2)$$

where $\Delta|J_{p-k+1}(z)| = 0$ and for each $J_{p-k+1} = h_{p-k+1} + \overline{g}_{p-k+1}$, $(k \in \{1, ..., p\})$ is harmonic in D, where

$$h_{p-k+1}(z) = \sum_{n=1}^{\infty} a_{n,p-k+1} z^n, \quad g_{p-k+1}(z) = \sum_{n=1}^{\infty} b_{n,p-k+1} z^n, \quad (a_{1,p} = 1, |b_{1,p}| < 1).$$

Denote by $\mathcal{H}_p^0 (b_{1,p} = 0, a_{1,p-k+1} = b_{1,p-k+1} = 0)$ the subclass of \mathcal{H}_p the class of function F of the form (2.1) that are harmonic, univalent, and sense-preserving in the unit disk. Obviously, if $p = 1$ and $p = 2$, F is harmonic and biharmonic, respectively. Biharmonic mappings arise in a lot of physical situations, particularly in fluid dynamics and elasticity problems, and have many important applications in engineering and biology.

In [5], Qiao and Wang introduced the class \mathcal{HS}_p of polyharmonic mappings F given by (2.1) satisfying the condition

$$\sum_{k=1}^{p} \sum_{n=2}^{\infty} [2(k-1) + n] (|a_{n,p-k+1}| + |b_{n,p-k+1}|) \leq 1 - |b_{1,1}| - \sum_{k=2}^{p} (2k-1)(|a_{1,p-k+1}| + |b_{1,p-k+1}|), \quad (2.3)$$

where $0 \leq |b_{1,1}| + \sum_{k=2}^{p} (2k-1)(|a_{1,p-k+1}| + |b_{1,p-k+1}|) < 1$, and the subclass \mathcal{HC}_p of \mathcal{HS}_p, where

$$\sum_{k=1}^{p} \sum_{n=2}^{\infty} [2(k-1) + n^2] (|a_{n,p-k+1}| + |b_{n,p-k+1}|) \leq 1 - |b_{1,1}| - \sum_{k=2}^{p} (2k-1)(|a_{1,p-k+1}| + |b_{1,p-k+1}|). \quad (2.4)$$
The classes of all mappings \(F \) in \(\mathcal{HS}_p \), which are of the form (2.1), and subject the conditions (2.3) and (2.4) are denoted by \(\mathcal{HS}_p^0, \mathcal{HC}_p^0 \), respectively.

Now we introduce new classes of polyharmonic mappings, denoted by \(\mathcal{HS}_p(\alpha) \) and \(\mathcal{HC}_p(\alpha) \) as follows:

Denote by \(\mathcal{HS}_p(\alpha) \) the class of all functions of the form (2.1) that satisfy the condition

\[
\frac{\partial}{\partial \theta}(\arg F(re^{i\theta})) \geq \alpha, \quad (0 \leq \alpha < 1, \ |z| = r < 1).
\] (2.5)

Also, denote by \(\mathcal{HC}_p(\alpha) \) the subclass of \(\mathcal{HS}_p(\alpha) \) such that the functions \(H \) and \(G \) in \(F = H + \overline{G} \) are of the form:

\[
H(z) = z - \sum_{n=2}^{\infty} |a_{n,1}|z^n - \sum_{k=2}^{p} \sum_{n=2}^{\infty} |z|^{2(k-1)}|a_{n,p-k+1}|z^n,
\]

\[
G(z) = \sum_{n=2}^{\infty} |b_{n,1}|z^n + \sum_{k=2}^{p} \sum_{n=1}^{\infty} |z|^{2(k-1)}|b_{n,p-k+1}|z^n.
\] (2.6)

3. Main results

Theorem 3.1. Let \(F \) be given by (2.1) and

\[
\sum_{k=1}^{p} \sum_{n=2}^{\infty} \left\{ \frac{2(k-1) + n - \alpha}{1 - \alpha} |a_{n,p-k+1}| + \frac{2(k-1) + n + \alpha}{1 - \alpha} |b_{n,p-k+1}| \right\} \leq 1 - \frac{1 + \alpha}{1 - \alpha} |b_{1,1}| - \sum_{k=2}^{p} \left\{ \frac{2k - 1 - \alpha}{1 - \alpha} |a_{1,p-k+1}| + \frac{2k - 1 + \alpha}{1 - \alpha} |b_{1,p-k+1}| \right\},
\] (3.1)

where \(0 \leq \frac{1 + \alpha}{1 - \alpha} |b_{1,1}| + \sum_{k=2}^{p} \left\{ \frac{2k - 1 - \alpha}{1 - \alpha} |a_{1,p-k+1}| + \frac{2k - 1 + \alpha}{1 - \alpha} |b_{1,p-k+1}| \right\} < 1\). Then \(F \) is univalent and sense preserving in \(U \) and \(F \in \mathcal{HS}_p(\alpha) \).

Proof. First, we note that \(F \) is locally univalent and sense-preserving in \(U \). This is because

\[
|H'(z)| > 1 - \sum_{k=2}^{p} (2k-1)|a_{1,p-k+1}|r^{2(k-1)} - \sum_{k=1}^{p} \sum_{n=2}^{\infty} (2k-1 + n)|a_{n,p-k+1}|r^{2(k-1)+n-1} > 1 - \sum_{k=2}^{p} (2k-1)|a_{1,p-k+1}| - \sum_{k=1}^{p} \sum_{n=2}^{\infty} (2k-1 + n)|a_{n,p-k+1}|
\]
To show that F is univalent in U we notice that for $|z_1| < 1$, and by (3.1), we have

\[
|F(z_1) - F(z_2)| \geq |H(z_1) - H(z_2)| - |G(z_1) - G(z_2)|
\]

\[
= \left| (z_1 - z_2) + \sum_{k=1}^{p} \sum_{n=2}^{\infty} a_{n,p-k+1} (z_1^n - z_2^n) \right| - \left| \sum_{k=1}^{p} \sum_{n=1}^{\infty} b_{n,p-k+1} (z_1^n - z_2^n) \right|
\]

\[
\geq |z_1 - z_2| \left\{ 1 - \sum_{n=2}^{\infty} a_{n,p} \frac{z_1^n - z_2^n}{z_1 - z_2} + \sum_{n=1}^{\infty} b_{n,p} \frac{z_1^n - z_2^n}{z_1 - z_2} \right\}
\]

\[
- \left| \sum_{k=2}^{p} \left(\sum_{n=1}^{\infty} a_{n,p-k+1} \frac{|z_1|^{2(k-1)} (z_1^n - z_2^n)}{z_1 - z_2} + \sum_{n=1}^{\infty} b_{n,p-k+1} \frac{|z_1|^{2(k-1)} (z_1^n - z_2^n)}{z_1 - z_2} \right) \right|
\]

\[
\geq |z_1 - z_2| \left\{ 1 - |b_{1,1}| - |z_2| \sum_{n=2}^{\infty} n(|a_{n,p}| + |b_{n,p}|) \right\}
\]

\[
- |z_2| \sum_{k=2}^{p} \sum_{n=1}^{\infty} (2(k-1) + n)(|a_{n,p-k+1}| + |b_{n,p-k+1}|) \right\}
\]

\[
\geq |z_1 - z_2| \left\{ (1 - |b_{1,1}| - |z_2| \sum_{n=2}^{\infty} \left\{ n - \frac{\alpha}{1 - \alpha} |a_{n,p}| + n + \frac{\alpha}{1 - \alpha} |b_{n,p}| \right\} \right\}
\]

\[
- |z_2| \sum_{k=2}^{p} \sum_{n=1}^{\infty} \left\{ (2(k-1) + n - \frac{\alpha}{1 - \alpha}) |a_{n,p-k+1}| + (2(k-1) + n + \frac{\alpha}{1 - \alpha}) |b_{n,p-k+1}| \right\}
\]

\[
\geq |z_1 - z_2| (1 - |b_{1,1}|) (1 - |z_2|) > 0.
\]

Consequently, F is univalent in U.

Now we show that $F \in \mathcal{H}(\delta_p(\alpha))$. According to the condition (2.4) we only need to show that if (3.1) holds, then

\[
\frac{\partial}{\partial \theta} \left(\text{arg} F(re^{i\theta}) \right) = \mathcal{H} \left(\frac{\partial}{\partial \theta} \log F(re^{i\theta}) \right) = \partial \left(\frac{zH'(z) - zG'(z)}{H(z) + G(z)} \right) > \alpha,
\]

where $z = re^{i\theta}$, $0 \leq \theta < 2\pi$, $0 \leq r < 1$, and $0 \leq \alpha < 1$.

Using the fact that $\Re w \geq \alpha$ if and only if $|1 - \alpha + w| \geq |1 + \alpha - w|$, it suffices to show that

\[
\left| A(z) + (1 - \alpha) B(z) \right| - \left| A(z) - (1 + \alpha) B(z) \right| \geq 0,
\]

where $B(z) = H(z) + G(z)$ and $zH'(z) - zG'(z)$.

\[
\text{(3.2)}
\]
Substituting for $B(z)$ and $A(z)$ in (3.2),

\[
|A(z) - (1 - \alpha)B(z)| - |A(z) - (1 + \alpha)B(z)| \\
= \left| (1 - \alpha)H(z) + zH'(z) + \frac{1}{1 - \alpha}G(z) - zG'(z) \right| - \left| (1 + \alpha)H(z) - zH'(z) + \frac{1}{1 + \alpha}G(z) + zG'(z) \right| \\
= \sum_{k=1}^{p} \sum_{n=1}^{\infty} [2(k-1) + n + 1 - \alpha]|a_{n,p-k+1}|z^{2(k-1)+n} \\
- \sum_{k=1}^{p} \sum_{n=1}^{\infty} [2(k-1) + n - 1 + \alpha]|b_{n,p-k+1}|z^{2(k-1)+n} \\
+ \sum_{k=1}^{p} \sum_{n=1}^{\infty} [2(k-1) + n - 1 - \alpha]|a_{n,p-k+1}|z^{2(k-1)+n} \\
- \sum_{k=1}^{p} \sum_{n=1}^{\infty} [2(k-1) + n + 1 + \alpha]|b_{n,p-k+1}|z^{2(k-1)+n} \\
\geq (2 - \alpha)|z| + \sum_{k=2}^{p} [2(k-1) + 2 - \alpha]|a_{1,p-k+1}| + \sum_{k=1}^{p} \sum_{n=2}^{\infty} [2(k-1) + n + 1 - \alpha]|a_{n,p-k+1}|z^{2(k-1)+n} \\
- \alpha|b_{1,1}|z - \sum_{k=2}^{p} [2(k-1) + \alpha]|b_{1,p-k+1}|z^{2(k-1)+1} \\
- \sum_{k=1}^{p} \sum_{n=2}^{\infty} [2(k-1) + n + 1 - \alpha]|b_{n,p-k+1}|z^{2(k-1)+n} \\
- \alpha|z| + \sum_{k=2}^{p} [2(k-1) - \alpha]|a_{1,p-k+1}| + \sum_{k=1}^{p} \sum_{n=2}^{\infty} [2(k-1) + n - 1 - \alpha]|a_{n,p-k+1}|z^{2(k-1)+n} \\
- (2 + \alpha)|b_{1,1}|z - \sum_{k=2}^{p} [2(k-1) + 2 + \alpha]|b_{1,p-k+1}|z^{2(k-1)+1} \\
- \sum_{k=1}^{p} \sum_{n=2}^{\infty} [2(k-1) + n + 1 + \alpha]|b_{n,p-k+1}|z^{2(k-1)+n} \\
\geq 2(1 - \alpha)|z| \left\{ 1 - \frac{1 + \alpha}{1 - \alpha}|b_{1,1}| - \sum_{k=2}^{p} \frac{2(k-1) - \alpha}{1 - \alpha}|a_{1,p-k+1}|z^{2k+n-3} \right\} \\
- \sum_{k=2}^{p} \frac{2(k-1) + \alpha}{1 - \alpha}|b_{1,p-k+1}|z^{2k+n-3} - \sum_{k=1}^{p} \sum_{n=2}^{\infty} \frac{2(k-1) + n - \alpha}{1 - \alpha}|a_{n,p-k+1}|z^{2k+n-3} \\
- \sum_{k=1}^{p} \sum_{n=2}^{\infty} \frac{2(k-1) + n + \alpha}{1 - \alpha}|b_{n,p-k+1}|z^{2k+n-3} \right\} \\
\geq 2(1 - \alpha)|z| \left\{ 1 - \frac{1 + \alpha}{1 - \alpha}|b_{1,1}| - \sum_{k=2}^{p} \frac{2(k-1) - \alpha}{1 - \alpha}|a_{1,p-k+1}| - \sum_{k=2}^{p} \frac{2(k-1) + \alpha}{1 - \alpha}|b_{1,p-k+1}| \right\} - \sum_{k=1}^{p} \sum_{n=2}^{\infty} \frac{2(k-1) + n - \alpha}{1 - \alpha}|a_{n,p-k+1}| \right\} - \sum_{k=1}^{p} \sum_{n=2}^{\infty} \frac{2(k-1) + n + \alpha}{1 - \alpha}|b_{n,p-k+1}| \right\} \geq 0, \text{ by (3.1).}
The starlike polyharmonic mappings

\[F(z) = \sum_{k=1}^{p} |z|^{2(k-1)} \left\{ \sum_{n=1}^{\infty} \left\{ \frac{1-\alpha}{2(k-1)+n-\alpha} x_{n,p-k+1} z^{n} + \frac{1-\alpha}{2(k-1)+n+\alpha} y_{n,p-k+1} \right\} \right\} , \quad (3.3) \]

where \(\sum_{k=1}^{p} \left\{ \sum_{n=1}^{\infty} \left\{ |x_{n,p-k+1}| + |y_{n,p-k+1}| \right\} \right\} = 1 \), show that the coefficient bound given by (3.1) is sharp. The functions of form (3.3) are in \(\mathcal{HS}_{p}(\alpha) \) because

\[\sum_{k=1}^{p} \sum_{n=1}^{\infty} \left\{ \frac{2(k-1)+n-\alpha}{1-\alpha} |a_{n,p-k+1}| + \frac{2(k-1)+n+\alpha}{1-\alpha} |b_{n,p-k+1}| \right\} = 1 + \sum_{k=1}^{p} \left\{ \sum_{n=1}^{\infty} \left\{ |x_{n,p-k+1}| + |y_{n,p-k+1}| \right\} \right\} = 1 - \frac{1}{1-\alpha} |b_{1,1}| - \sum_{k=2}^{p} \left\{ \frac{2(k-1)-\alpha}{1-\alpha} |a_{1,p-k+1}| + \frac{2(k-1)+\alpha}{1-\alpha} |b_{1,p-k+1}| \right\} . \]

The restriction placed in Theorem 3.1 on the moduli of the coefficients of \(F = H + \mathcal{G} \) enables us to conclude for arbitrary rotation of the coefficients of \(F \) that the resulting functions would still be harmonic univalent and \(F \in \mathcal{HS}_{p}(\alpha) \).

Next, we discuss the geometric properties of mappings belonging to \(\mathcal{HS}_{p}(\alpha) \).

Theorem 3.2. Each mapping in \(\mathcal{HS}_{p}(\alpha) \) maps \(\mathbb{U} \) onto a starlike domain with respect to the origin.

Proof. Let \(r \in (0,1) \) be a fixed number and

\[F_{r}(z) = z + \sum_{n=2}^{\infty} \left(\sum_{k=1}^{p} r^{2(k-1)} a_{n,p-k+1} \right) z^{n} + \sum_{n=2}^{\infty} \left(\sum_{k=1}^{p} r^{2(k-1)} b_{n,p-k+1} \right) z^{n} . \]

Obviously, \(F_{r} \) is a harmonic mapping. Since

\[F_{r}(z) = \sum_{n=2}^{\infty} \left[\sum_{k=1}^{p} r^{2(k-1)} a_{n,p-k+1} \right] z^{n} + \sum_{n=2}^{\infty} \left[\sum_{k=1}^{p} r^{2(k-1)} b_{n,p-k+1} \right] z^{n} \]

\[\leq \sum_{n=2}^{\infty} \sum_{k=1}^{p} \left(2(k-1)+n \right) \left(|a_{n,p-k+1}| + |b_{n,p-k+1}| \right) \]

\[\leq \sum_{n=2}^{\infty} \sum_{k=1}^{p} \left(\frac{2(k-1)+n-\alpha}{1-\alpha} |a_{n,p-k+1}| + \frac{2(k-1)+n+\alpha}{1-\alpha} |b_{n,p-k+1}| \right) \leq 1 , \]

it follows that \(F_{r} \in \mathcal{HS}_{p}(0) \). By (2.5), we know that \(F_{r} \) maps \(\mathbb{U} \) onto a starlike domain with respect to the origin for each \(r \in (0,1) \), we show that \(F \) is starlike with respect to the origin. \(\square \)

Example 3.3. Let \(F_{1}(z) = z + \frac{1}{2} z^{2} + \frac{1}{2} z^{2} \). Then \(F_{1} \in \mathcal{HS}_{1}(\frac{1}{2}) \) is a univalent, sense preserving polyharmonic mapping. In particular, \(F_{1} \) maps \(\mathbb{U} \) onto a starlike domain with respect to the origin (see Figure 1).

Example 4.4. Let \(F_{2}(z) = z + \frac{1}{3} z^{2} + \frac{2}{3} z^{2} \). Then \(F_{2} \in \mathcal{HS}_{1}(\frac{1}{3}) \) is a univalent, sense preserving polyharmonic mapping. In particular, \(F_{1} \) maps \(\mathbb{U} \) onto a starlike domain with respect to the origin (see Figure 1).
We next show that the condition (3.1) is also necessary for functions in $\mathcal{HT}_p(\alpha)$.

Theorem 3.5. Let $F = H + G$ with H and G are given by (2.6). Then $F \in \mathcal{HT}_p(\alpha)$ if and only if

$$
\sum_{k=1}^p \sum_{n=2}^{\infty} \left\{ \frac{2(k-1) + n - \alpha}{1 - \alpha} \right\} a_{n,p-k+1} + \left\{ \frac{2(k-1) + n + \alpha}{1 - \alpha} \right\} b_{n,p-k+1}
\leq 1 - \frac{1 + \alpha}{1 - \alpha} |b_{1,1}| - \sum_{k=2}^p \left\{ \frac{2k-1 - \alpha}{1 - \alpha} |a_{n,p-k+1}| + \frac{2k-1 + \alpha}{1 - \alpha} |b_{n,p-k+1}| \right\},
$$

(3.4)

where $0 \leq \frac{1 + \alpha}{1 - \alpha} |b_{1,1}| + \sum_{k=2}^p \left\{ \frac{2k-1 - \alpha}{1 - \alpha} |a_{n,p-k+1}| + \frac{2k-1 + \alpha}{1 - \alpha} |b_{n,p-k+1}| \right\} < 1$.

Proof. We first suppose that $F \in \mathcal{HT}_p(\alpha)$, then by (2.5) we have

$$\Re\left\{ \frac{zH'(z) - G'(z)}{H(z) + G(z)} \right\} - \alpha \geq 0.$$

The above condition must hold for all values of z, $|z| = r < 1$. Upon choosing the values of z on the positive real axis where $0 \leq z = r < 1$ we must have

$$
\left([(1 - \alpha) - ((1 + \alpha)|b_{1,p}|)] - \sum_{k=2}^p \left\{ (2k-1 - \alpha)|a_{n,p-k+1}| + (2k-1 + \alpha)|b_{n,p-k+1}| r^{2(k-1)} \right\} \right.
$$

$$
- \sum_{k=1}^p \sum_{n=2}^{\infty} \left\{ 2(k-1) + n - \alpha |a_{n,p-k+1}| + 2(k-1) + n + \alpha |b_{n,p-k+1}| r^{2k+n-3} \right\} r^{2k+n-3} \geq 0.
$$

(3.5)

If the condition (3.4) does not hold then the numerator in (3.5) is negative for r sufficiently close to 1. Thus there exits a $z_0 = r_0$ in $(0, 1)$ for which the quotient in (3.5) is negative. This contradicts the required condition for $F \in \mathcal{HT}_p(\alpha)$ and so the proof is complete. \qed

Example 3.6. Let $F_1(z) = z - \frac{1}{4} z^2 + \frac{5}{8} z^2$. Then $F_1 \in \mathcal{HT}_1\left(\frac{10}{11}\right)$ is a univalent, sense preserving polyharmonic mapping. In particular, F_1 maps U onto a starlike domain with respect to the origin (see Figure 2).

Example 3.7. Let $F_2(z) = z - \frac{1}{10} z^2 + \frac{5}{10} z^2$. Then $F_2 \in \mathcal{HT}_1\left(\frac{5}{11}\right)$ is a univalent, sense preserving polyharmonic mapping. In particular, F_1 maps U onto a starlike domain with respect to the origin (see Figure 2).
Theorem 3.8. \(F \in \mathcal{F}(\mathcal{J}_p(\alpha)) \) if and only if \(F \) can be expressed as

\[
F(z) = \sum_{k=1}^{p} \sum_{n=1}^{\infty} \left(X_{n,p-k+1} H_{n,p-k+1}(z) + Y_{n,p-k+1} G_{n,p-k+1}(z) \right),
\]

where

\[
H_{1,1}(z) = z, \quad H_{n,1}(z) = z - \frac{1 - \alpha}{n - \alpha} z^n \quad (n = 2, 3, \ldots),
\]

\[
H_{n,p-k+1}(z) = z - |z|^{2(k-1)} \frac{1 - \alpha}{2(k-2) + n - \alpha} z^n \quad (n = 1, 2, \ldots, 2 \leq k \leq p),
\]

\[
G_{1,1}(z) = z + \frac{1 - \alpha}{n + \alpha} z^{2\pi} \quad (n = 1, 2, \ldots),
\]

\[
G_{n,p-k+1}(z) = z + |z|^{2(k-1)} \frac{1 - \alpha}{2(k-2) + n + \alpha} z^{2\pi} \quad (n = 1, 2, \ldots, 2 \leq k \leq p),
\]

and

\[
\sum_{k=1}^{p} \sum_{n=1}^{\infty} (X_{n,p-k+1} + Y_{n,p-k+1}) = 1, \quad (X_{n,p-k+1} \geq 0, Y_{n,p-k+1} \geq 0).
\]

In particular, the extreme points of \(\mathcal{F}(\mathcal{J}_p(\alpha)) \) are \(\{H_{n,p-k+1}\} \) and \(\{G_{n,p-k+1}\} \).

Proof. Note that for \(F \) we may write

\[
F(z) = \sum_{k=1}^{p} \sum_{n=1}^{\infty} \left(X_{n,p-k+1} H_{n,p-k+1}(z) + Y_{n,p-k+1} G_{n,p-k+1}(z) \right)
\]

\[
= \sum_{n=1}^{\infty} X_{n,1} H_{n,1}(z) + Y_{n,1} G_{n,1}(z) + \sum_{k=2}^{p} \sum_{n=1}^{\infty} X_{n,p-k+1} H_{n,p-k+1}(z) + Y_{n,p-k+1}
\]

\[
= z - \sum_{k=2}^{p} \sum_{n=2}^{\infty} \left| z \right|^{2(k-1)} \frac{1 - \alpha}{2(k-1) + n - \alpha} X_{n,p-k+1} z^n
\]

\[+ \sum_{k=2}^{p} \sum_{n=1}^{\infty} \left| z \right|^{2(k-1)} \frac{1 - \alpha}{2(k-1) + n + \alpha} Y_{n,p-k+1} z^{2\pi} - \sum_{n=2}^{\infty} \frac{1 - \alpha}{n - \alpha} z^n + \sum_{n=1}^{\infty} \frac{1 - \alpha}{n + \alpha} z^{2\pi}.\]
Then, by Theorem 3.5 we have

\[
\sum_{k=1}^{p} \sum_{n=2}^{\infty} \left\{ \frac{1 - \alpha}{2(k-1)+n-\alpha} \left(2(k-1) + n - \alpha X_{n,p-k+1} \right) + \frac{1 - \alpha}{2(k-1)+n+\alpha} \left(2(k-1) + n + \alpha Y_{n,p-k+1} \right) \right\} \\
+ Y_{1,1} + \sum_{k=2}^{p} \left\{ \frac{2k-1 - \alpha}{2k-1-\alpha} \left(2k-1 + \alpha Y_{1,p-k+1} \right) \right\} \\
\leq \sum_{k=1}^{p} \sum_{n=2}^{\infty} \left(X_{n,p-k+1} + Y_{n,p-k+1} \right) + \sum_{k=1}^{p} \left(X_{1,p-k+1} + Y_{1,p-k+1} \right) - Y_{1,1} \leq 1 - Y_{1,1} \leq 1,
\]

so \(F \in \mathcal{HT}_p(\alpha) \). Conversely, suppose that \(F \in \mathcal{HT}_p(\alpha) \). Then

\[
\sum_{k=1}^{p} \sum_{n=2}^{\infty} \left\{ \frac{2(k-1) + n - \alpha}{1-\alpha} |a_{n,p-k+1}| + \frac{2(k-1) + n + \alpha}{1-\alpha} |b_{n,p-k+1}| \right\} \\
\leq 1 - \frac{1 + \alpha}{1-\alpha} |b_{1,1}| - \sum_{k=2}^{p} \left\{ \frac{2k-1 - \alpha}{1-\alpha} |a_{n,p-k+1}| + \frac{2k-1 + \alpha}{1-\alpha} |b_{n,p-k+1}| \right\}.
\]

Setting

\[
X_{n,p-k+1} = \left(\frac{2(k-1) + n - \alpha}{1-\alpha} \right) |a_{n,p-k+1}| \quad (2 \leq k \leq p, \ n = 1, 2, \ldots), \\
X_{n,1} = \left(\frac{n - \alpha}{1-\alpha} \right) |a_{n,1}| \quad (n = 2, 3, \ldots), \\
Y_{n,p-k+1} = \left(\frac{2(k-1) + n + \alpha}{1-\alpha} \right) |b_{n,p-k+1}| \quad (1 \leq k \leq p, \ n = 1, 2, \ldots),
\]

and

\[
X_{1,1} = 1 - \sum_{k=1}^{p} \sum_{n=2}^{\infty} \left(X_{n,p-k+1} + Y_{n,p-k+1} \right) - \sum_{k=2}^{p} \left(X_{1,p-k+1} + Y_{1,p-k+1} \right) - Y_{1,1},
\]

we obtain

\[
F(z) = \sum_{k=1}^{p} \sum_{n=1}^{\infty} (X_{n,p-k+1}H_{n,p-k+1}(z) + Y_{n,p-k+1}G_{n,p-k+1}(z)),
\]

as required. \(\square \)

Finally, we give the distortion bounds for functions in \(\mathcal{HT}_p(\alpha) \), which yields a covering result for \(\mathcal{HT}_p(\alpha) \).

Theorem 3.9. If \(F \in \mathcal{HT}_p(\alpha) \), then

\[
|f(z)| \leq \left(1 + |b_{1,1}| \right) r + \left(\frac{1 - \alpha}{2 - \alpha} - \frac{1 + \alpha}{2 - \alpha} |b_{1,1}| \right) r^2, \quad |z| = r < 1,
\]

and

\[
|f(z)| \geq \left(1 - |b_{1,1}| \right) r - \left(\frac{1 - \alpha}{2 - \alpha} - \frac{1 + \alpha}{2 - \alpha} |b_{1,1}| \right) r^2, \quad |z| = r < 1.
\]
Proof. We only prove the first inequality. The argument for second inequality is similar and will be omitted. Let \(F \in \mathcal{HC}_p(\alpha) \). Taking the absolute value of \(F \), we obtain

\[
|F(z)| \leq (1 + |b_{1,1}|)|z| + \left(\sum_{k=1}^{p} \sum_{n=2}^{\infty} (|a_{n,p-k+1}| + |b_{n,p-k+1}|) \right) |z|^n
\]

\[
\leq (1 + |b_{1,1}|)r + \left(\sum_{k=1}^{p} \sum_{n=2}^{\infty} |a_{n,p-k+1}| + |b_{n,p-k+1}| \right) r^{\alpha}
\]

\[
= (1 + |b_{1,1}|)r + \frac{1 - \alpha}{2 - \alpha} \left(\sum_{k=1}^{p} \sum_{n=2}^{\infty} \left(\frac{1 - \alpha}{2 - \alpha} |a_{n,p-k+1}| + \frac{1 - \alpha}{2 - \alpha} |b_{n,p-k+1}| \right) \right)^2
\]

\[
\leq (1 + |b_{1,1}|)r + \frac{1 - \alpha}{2 - \alpha} \left(\frac{2(k-1) + n - \alpha}{1 - \alpha} |a_{n,p-k+1}| + \frac{2(k-1) + n + \alpha}{1 - \alpha} |b_{n,p-k+1}| \right) r^{\alpha}
\]

\[
\leq (1 + |b_{1,1}|)r + \frac{1 - \alpha}{2 - \alpha} \left(1 - \frac{1 + \alpha}{1 - \alpha} |b_{1,1}| \right) r^{\alpha} \quad \text{(by (3.4))}
\]

\[
= (1 + |b_{1,1}|)r + \left(\frac{1 - \alpha}{2 - \alpha} - \frac{1 + \alpha}{2 - \alpha} |b_{1,1}| \right) r^{\alpha}.
\]

The bounds given in Theorem 3.5 for the functions \(F = H + \mathcal{G} \) of the form (2.6) also hold for functions of the form (2.2) if the coefficient condition (3.1) is satisfied. The functions \(F \) given by

\[
F(z) = z + |b_{1,1}|z + \left(\frac{1 - \alpha}{2 - \alpha} - \frac{1 + \alpha}{2 - \alpha} |b_{1,1}| \right) z^2
\]

for \(|b_{1,1}| \leq (1 - \alpha)/(1 + \alpha) \) show that the bounds given in Theorem 3.5 are sharp. \(\square \)

The following covering result follows from the second inequality in Theorem 3.5.

Corollary 3.10. If \(F \in \mathcal{HC}_p(\alpha) \), then

\[
\left\{ w : |w| < \frac{1}{2 - \alpha} (1 - |b_{1,1}|) \left[1 + (2\alpha - 1)|b_{1,1}| \right] \right\} \subset F(U).
\]

The corresponding definition for polyharmonic convex function of order \(\alpha \) leads to the following corollary.

Corollary 3.11. Let \(F \) be given by (2.1) and

\[
\sum_{k=1}^{p} \sum_{n=2}^{\infty} \left\{ \frac{2(k-1) + n(\alpha - n)}{1 - \alpha} |a_{n,p-k+1}| + \frac{2(k-1) + n(\alpha + n)}{1 - \alpha} |b_{n,p-k+1}| \right\}
\]

\[
\leq 1 - \frac{1 + \alpha}{1 - \alpha} |b_{1,1}| - \sum_{k=2}^{p} \left\{ \frac{2k - 1 - \alpha}{1 - \alpha} |a_{1,p-k+1}| + \frac{2k - 1 + \alpha}{1 - \alpha} |b_{1,p-k+1}| \right\},
\]

where \(0 \leq \frac{1 + \alpha}{1 - \alpha} |b_{1,1}| + \sum_{k=2}^{p} \left\{ \frac{2k-1-\alpha}{1-\alpha} |a_{1,p-k+1}| + \frac{2k-1+\alpha}{1-\alpha} |b_{1,p-k+1}| \right\} < 1 \). Then \(F \) is univalent and sense preserving in \(U \) and \(F \in \mathcal{HC}_p(\alpha) \).
Acknowledgment

The authors would like to thank University of Dammam and Deanship of Scientific Research at the University for their support to the present research.

References