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Abstract

This work is related to an analytical solution of a fractional order epidemic model for the spread of the Pine wilt disease
with bilinear incident rate. To obtain an analytical solution of the system of nonlinear fractional differential equations for the
considered model. Laplace Adomian decomposition method (LADM) will be used. Comparison of the results have been carried
out between the proposed method and that of homotopy purturbation (HPM). Numerical results show that (LADM) is very
efficient and accurate for solving fractional order Pine wilt disease model. c©2017 All rights reserved.

Keywords: Pine Wilt Disease, bilinear incident rate, fractional derivatives, Laplace-Adomian decomposition method, analytical
solution.
2010 MSC: 34A08, 65P99.

1. Introduction

In 1905, for the first time epidemic of the Pine wilt disease (PWD) was introduced in Japan [13]. Pine
wilt disease (PWD) is transmitted by the Pinewood nematode Bursaphelenchus xylophilus Nickle which is
a dramatic disease and usually it kills affected trees with in few days of few months. Since in Japan PWD
was present, then the disease has spread to Taiwan, Korea, China and also spread in East Asia Pine forests.
After that it was found in 1999 in Purtagal [9]. During the 20-th century Pine wilt faced greatest losses in
Japan, the disease spread through highly suspectable Japanese black (P. ihunbergiana) and Japanese red
(P.densiflora) Pine forests with devastatingly. Thus PWD was considered great dangerous to forests all
over the world [14]. Particularly Pine wilt kills scots Pine.

Mathematical modeling is useful to understand, how to a disease spread and also determined various
factors that include in the spread of the disease. For this purpose, different control techniques can be
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introduced to analysis the spread of the disease. Few mathematical models have been developed pest-
tress dynamics, such as PWD transmission was investigated by Lee and Kim [6] and Shi and Song [12].
In 2014 Lee and Lashari determined the global stability of a host vector model for Pine-wilt disease with
nonlinear incident rate [7].

Incident rate of the transmission of the disease plays an important role in the study of the mathe-
matical epidemiology. For this purpose, we propose a fractional order model for Pine wilt disease with
bilinear incident rate and find its approximate solution. Consider the following four nonlinear fractional
differential equations 

cDαSh = ah −φαShIv − µ1Sh,
cDαEh = φαShIv − (β+ µ1)Eh,
cDαIh = βEh − µ1Ih,
cDαSv = bv − γIhSv − µ2Sv,
cDαIv = γIhSv − µ2Iv,

(1.1)

with given initial conditions Sh(0) = n1, Eh(0) = n2, Ih(0) = n3, Sv(0) = n4, Iv(0) = n5, where cDα

0 < α < 1 is the Caputo derivative of fractional order, α shows the fractional time derivative.
In model (1.1) the initial conditions are independent on each other and satisfy the relation Mh =

S+ E+ I where Mh is the total number of the individuals in the population. k,α are positive constants,
Sh(t) is susceptible Pine trees at time t, Eh(t) is the exposed Pine trees and Ih(t) is the infected Pine trees
and the total vector population is Mv(t) = Sv(t) + Iv(t). ah is the constant increase rate and bv is the
constant emergency rate of adult beetles at time t, µ1 is the natural death rate of Pine trees host and µ2 is
the natural death rate of beetles as vectors.

For the given model of fractional order the numerical solutions are studied by using Adomian decom-
position method with Laplace transform. For the verification of our procedure results, we assign random
values to the initial conditions and parameters.

In 1980, Adomian decomposition method (ADM) was introduced by Adomian, which is an effective
method for finding numerical and explicit solution of a wide and a system of differential equations
representing physical problems. This method works efficiently for both initial value problems as well
as for boundary value problem, for partial and ordinary differential equations, for linear and nonlinear
equations and also for stochastic system as well. In this method no perturbation or liberalization is
required. ADM has been done extensive work to provide analytical solution of nonlinear equations as
well as solving fractional order differential equations. In this paper we operate Laplace transform method,
which is a powerful technique in engineering and applied mathematics. With the help of this method we
transform fractional differential equations into algebraic equations, then solve this algebraic equations by
ADM.

2. Preliminaries

In order to facilitate the readers, here in this section we recall some fundamental definitions and results
from fractional calculus. For further detailed study, we refer to [2–5, 8].

Definition 2.1. The fractional integral of Riemann-Liouville type of order α ∈ R+ of a function f ∈
L1([0,∞), R) is defined as

Iαf(t) =
1
Γ(α)

∫t
0
(t− s)α−1f(s)ds,

provided that the integral on the right side is pointwise convergent on (0,∞).

Definition 2.2. The Caputo fractional order derivative of a function f for fractional order α is defined by

cDαf(t) =
1

Γ(n−α)

∫t
0
(t− s)n−α−1f(n)(s)ds,

where n = [α] + 1 and [α] represents the integer part of α. Throughout this paper, we use Caputo
derivative.
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Lemma 2.3. The following result holds for fractional differential equations

Iα[cDαh](t) = h(t) + c0 + c1t+ c2t
2 + · · ·+ cn−1t

n−1,

for arbitrary ci ∈ R, i = 0, 1, 2, · · · ,n− 1, where n = [α] + 1 and [α] represents the integer part of α.

Definition 2.4. We recall the definition of Laplace transform of Caputo derivative as:

L{cDαy(t)} = sαY(s) −

n−1∑
k=0

sα−i−1y(k)(0), n− 1 < α < n, n ∈ N

for arbitrary ci ∈ R, i = 0, 1, 2, · · · ,n− 1, where n = [α] + 1 and [α] represents the integer part of α.

3. The Laplace Adomian decomposition method

In this section, we discuss the general procedure of the model (1.1) with given initial conditions.
Applying Laplace transform on both side of the model (1.1) as

L{cDαSh} = L{ah −φαShIv − µ1Sh},
L{cDαEh} = L{φαShIv − (β+ µ1)Eh},
L{cDαIh} = L{βEh − µ1Ih},
L{cDαSv} = L{bv − γIhSv − µ2Sv},
L{cDαIv} = L{γIhSv − µ2Iv},

(3.1)

which implies that 

sαL{Sh}− s
αSh(0) = L{ah −φαShIv − µ1Sh},

sαL{Eh}− s
αEh(0) = L{φαShIv − (β+ µ1)Eh},

sαL{Ih}− s
αIh(0) = L{βEh − µ1Ih},

sαL{Sv}− s
αSv(0) = L{bv − γIhSv − µ2Sv},

sαL{Iv}− s
αIv(0) = L{γIhSv − µ2Iv}.

Now using initial conditions, we have

L{Sh} =
n1

s
+

1
sα

L{ah −φαShIv − µ1Sh},

L{Eh} =
n2

s
+

1
sα

L{φαShIv − (β+ µ1)Eh},

L{Ih} =
n3

s
+

1
sα

L{βEh − µ1Ih},

L{Sv} =
n4

s
+

1
sα

L{bv − γIhSv − µ2Sv},

L{Iv} =
n5

s
+

1
sα

L{γIhSv − µ2Iv}.

(3.2)

Assuming that the solutions, Sh(t),Eh(t), Ih(t),Sv(t), Iv(t) in the form of infinite series given by

Sh(t) =

∞∑
n=0

S
(n)
h , Eh(t) =

∞∑
n=0

E
(n)
h , Ih(t) =

∞∑
n=0

I
(n)
h , Sv(t) =

∞∑
n=0

S
(n)
v , Iv(t) =

∞∑
n=0

I
(n)
v ,

(3.3)

and the nonlinear terms are involved in the model are Sh(t)Iv(t),Sh(t)I2v(t),Sv(t)Ih(t) are decomposed
by Adomian polynomial as

Sh(t)Iv(t) =

∞∑
n=0

Bn(t),

Ih(t)Sv(t) =

∞∑
n=0

Qn(t),

(3.4)

where Bn,pn,Qn are Adomian polynomials defined as
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Bn(t) =
1

Γ(n+ 1)
dn

dλn

[
n∑
k=0

λkS
(k)
h (t)

n∑
k=0

(t)λkI
(k)
v

] ∣∣∣∣
λ=0

,

Qn(t) =
1

Γ(n+ 1)
dn

dλn

[
n∑
k=0

λkI
(k)
h (t)

n∑
k=0

λkS
(k)
v (t)

] ∣∣∣∣
λ=0

.

Using (3.3), (3.4) in model (3.2), we get

L(S
(0)
h ) =

n1

s
, L(E

(0)
h ) =

n2

s
, L(I(0)

h ) =
n3

s
,

L(S
(0)
v ) =

n4

s
, L(I

(0)
v ) =

n5

s
,

L(S
(1)
h ) =

1
sα

L{ah −αφB0 − µ1S
(0)
h },

L(E
(1)
h ) =

1
sα

L{αφB0 − (β+ µ1)E
(0)
h },

L(I
(1)
h ) =

1
sα

L{βE0 − µ1I
(0)
h },

L(S
(1)
v ) =

1
sα

L{bv − γQ0 − µ2S
(0)
v },

L(I
(1)
v ) =

1
sα

L{γQ0 − µ2I
(0)
v },

L(S
(2)
h ) =

1
sα

L{ah −αφB1 − µ1S
(1)
h },

L(E
(2)
h ) =

1
sα

L{αφB1 − (β+ µ1)E
(1)
h },

L(I
(2)
h ) =

1
sα

L{βE1 − µ1I
(1)
h },

L(S
(2)
v ) =

1
sα

L{bv − γQ1 − µ2S
(1)
v },

L(I
(2)
v ) =

1
sα

L{γQ1 − µ2I
(1)
v },

...

L(S
(n+1)
h ) =

1
sα

L{ah −αφBn − µ1S
(n)
h },

L(E
(n+1)
h ) =

1
sα

L{αφBn − (β+ µ1)E
(n)
h },

L(I
(n+1)
h ) =

1
sα

L{βEn − µ1I
(n)
h },

L(S
(n+1)
v ) =

1
sα

L{bv − γQn − µ2S
(n)
v },

L(I
(n+1)
v ) =

1
sα

L{γQ1 − µ2I
(1)
v }.

(3.5)

To study mathematical behavior corresponding to the solution of Sh,Eh, Ih,Sv, Iv, we use different values
of α. For the solution we take inverse transform of (3.5), we have

S
(0)
h = n1, E(0)

h = n2, I(0)
h = n3, S(0)

v = n4, I(0)
v = n5, S

(1)
h = (ah −φαB0 − µn1)

tα

Γ(α+ 1)
,

E
(1)
h = (αφB0 − (β+ µ)n2)

tα

Γ(α+ 1)
, I

(1)
h = (βn2 − µ1n3)

tα

Γ(α+ 1)
,

S
(1)
v = (bv − γQ0 − µ2n4)

tα

Γ(α+ 1)
, I

(1)
v = (γn3n4 − µ2n5)

tα

Γ(α+ 1)
,

S
(2)
h = ah

tα

Γ(α+ 1)
− (αφB1 + µ1S

1
h)

tα

Γ(α+ 1)
, E

(2)
h = (αφB1 − (β+ µ)E1

h)
tα

Γ(α+ 1)
,
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I
(2)
h = (βn2 − µ1I

1
h)

tα

Γ(α+ 1)
, S

(2)
v = (bv − γQ1 − µ2S

1
v)

tα

Γ(α+ 1)
,

I
(2)
v = (γQ1 − µ2I

1
v)

tα

Γ(α+ 1)
.

Similarly we can calculate the other terms in the same way which can be written after simplification for
three terms using the values. Finally we get the solution in the form of infinite series which is given by

Sh(t) = S
(0)
h + S

(1)
h + S

(2)
h + · · · , Eh(t) = E

(0)
h + E

(1)
h + E

(2)
h + · · · , Ih(t) = I

(0)
h + I

(1)
h + I

(2)
h + · · · ,

Sv(t) = S
(0)
v + S

(1)
v + S

(2)
v + · · · , Iv(t) = I

(0)
v + I

(1)
v + I

(2)
v + · · · .

4. Numerical results and discussion

The Laplace Adomian-decomposition method provides us an analytical solution in the form of infinite
series. For numerical results we consider the following values for parameters. Thus the first few terms of
Laplace-Adomian decomposition method solution are Sh,Eh, Ih and Sv, Iv are calculated. We calculated
the first three terms of the series solution of the system (1.1). Two of them are given as

n1 = 300,n2 = 40,n3 = 20,n4 = 70, n5 = 20,β = 0.0571, γ = 0.0405,
µ1 = 0.003, α = .01166, φ = 0.06, µ2 = 0.011,
ah = 10, bv = 4,

S0
h = 300, E0

h = 40, I0h = 20, S0
v = 70, I0v = 20,

S1
h = 4.9024

tα

Γ(α+ 1)
, E1

h = 5.6824
tα

Γ(α+ 1)
, I1h = 2.2240, S1

v = −53.47
tα

Γ(α+ 1)
,

I1v = 56.48
tα

Γ(α+ 1)
,

S2
h = 10

tα

Γ(α+ 1)
− 11.9373

t2α

Γ(2α+ 1)
,

E2
h = 11.5811

t2α

Γ(2α+ 1)
,

I2h = 0.3178
t2α

Γ(2α+ 1)
,

S2
v = 4

tα

Γ(α+ 1)
+ 37.59

t2α

Γ(2α+ 1)
,

I2v = −37.59
t2α

Γ(2α+ 1)
,

S3
h = 10

tα

Γ(α+ 1)
− 1.4292

t2α

Γ(2α+ 1)
+ 78.7408

t3α

Γ(3α+ 1)
,

E3
h = 1.3992

t2α

Γ(2α+ 1)
− 79.4010

t3α

Γ(3α+ 1)
,

I3h = 0.6603
t2α

Γ(2α+ 1)
,

S3
v = 4

tα

Γ(α+ 1)
− 3.2840

t2α

Γ(2α+ 1)
− 26.9859

t3α

Γ(3α+ 1)
,

I3v = 3.24
t2α

Γ(2α+ 1)
+ 26.945

t3α

Γ(3α+ 1)
.
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Thus solutions after three terms become

Sh(t) = 300 + 24.9024
tα

Γ(α+ 1)
− 13.3565

t2α

Γ(2α+ 1)
+ 78.7408

t3α

Γ(3α+ 1)
,

Eh(t) = 40 + 5.6824
tα

Γ(α+ 1)
+ 12.9801

t2α

Γ(2α+ 1)
− 79.4010

t3α

Γ(3α+ 1)
,

Ih(t) = 20 + 2.225
tα

Γ(α+ 1)
+ 0.3178

t2α

Γ(2α+ 1)
+ 0.6603

t3α

Γ(3α+ 1)
,

Sv(t) = 70 − 45.47
tα

Γ(α+ 1)
+ 34.31

t2α

Γ(2α+ 1)
− 26.9459

t3α

Γ(3α+ 1)
,

Iv(t) = 20 + 56.48
tα

Γ(α+ 1)
− 34.6260

t2α

Γ(2α+ 1)
+ 26.945

t3α

Γ(3α+ 1)
.

(4.1)
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Figure 1: The plot shows the dynamics of Sh,Eh, Ih,Sv compartments corresponding to different values of fractional order
α = 1, 0.95, 0.85, 0.75.
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Figure 2: The plot shows the dynamics of Iv(t) for α = 1, 0.95, 0.85, 0.75.
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Using α = 1 in the system (4.1), we obtain the approximate solution after three terms as

Sh(t) = 300 + 24.9024t− 5.968650000t2 + 12.40886667t3,

Eh(t) = 40 + 5.6824t+ 6.760150000t2 − 13.23350000t3,

Ih(t) = 20 + 2.2240t+ .1589000000t2 + .1100500000t3,

Sv(t) = 70 − 45.47t+ 17.15300000t2 − 4.490983334t3,

Iv(t) = 20 + 56.48t− 17.19300000t2 + 4.415833334t3.

Similarly we get the following system of series for α = 0.95

Sh(t) = 300 + 25.41370723t.95 − 6.532556330t1.90 − 0.7821140045t2.90 + 15.79321828t2.85,

Eh(t) = 40 + 5.799073583t0.95 + 7.398835695t1.90 − 15.92563607t2.85,

Ih(t) = 20 + 2.269664164t0.95 + .1739125599t1.90 + .1324378471t2.85,

Sv(t) = 70 − 46.40361041t0.95 + 18.77358175t1.90 − 5.404599401t2.85,

Iv(t) = 20 + 57.63967266t0.95 − 18.81736087t1.90 + 5.314161380t2.85.

Now for α = 0.85, we get the following series

Sh(t) = 300 + 26.33471413t0.85 − 7.727979143t1.70 − 0.9252366775t2.70 + 22.41251033t2.55,

Eh(t) = 40 + 6.009235237t0.85 + 8.752782991t1.70 − 22.60042739t2.55,

Ih(t) = 20 + 2.351918057t0.85 + 0.2057376267t1.70 + 0.1879455196t2.55,

Sv(t) = 70 − 48.08530308t0.85 + 22.20904664t1.70 − 7.669788244t2.55,

Iv(t) = 20. + 59.72856649t0.85 − 22.26083711t1.70 + 7.541445620t2.55.

Similarly, the solution after three terms for α = 0.75, we can write:

Sh(t) = 300 + 27.09543613t0.75 − 8.979867089t1.50 − 1.075119671t2.50 + 30.88774534t2.25,

Eh(t) = 40 + 6.182821988t0.75 + 10.17068324t1.50 − 31.14672276t2.25,

Ih(t) = 20 + 2.419857120t0.75 + 0.2390659329t1.50 + 0.2590166502t2.25,

Sv(t) = 70 − 49.47432701t0.75 + 25.80678381t1.50 − 10.57009958t2.25,

Iv(t) = 20 + 61.45392543t0.75 − 25.86696403t1.50 + 10.39322451t2.25.

5. Convergence analysis and comparison with homotopy perturbation method at fractional order

The above series solution is in form of series, which is rapidly convergent series and converges uni-
formly to the exact solution. To check the convergence of the series (4.1), we use techniques as used in
[1, 10] and provide the following result.

Theorem 5.1. Let X and Y be two Banach spaces and T : X → X be a contractive nonlinear operator such that for
all x, x

′ ∈ X, ||T(x) − T(x
′
)|| 6 k||x− x

′
||, 0 < k < 1. Then T has a unique fixed point x such that Tx = x, where

x = (Sh,Eh, Ih,Sv, Iv). Moreover the series given in (4.1) can be written as by applying Adomian decomposition
method

xn = Txn−1, xn−1 =

n−1∑
i=1

xi, n = 1, 2, 3, · · · ,

and assume that x ∈ Br(x) where Br(x) = {x
′ ∈ X : ||x

′
− x|| < r}, then we have

(i) xn ∈ Br(x);
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(ii) limn→∞ xn = x.

Proof. For the proof see [11].

In the following Figures 3 and 4, we compared the solutions obtained via using the proposed (LADM)
with the solution obtained by using homotopy perturbation method (HPM) corresponding to fractional
order α = 0.95. Taking first three terms series solutions of the proposed method and five terms series
solutions vis using (HPM) for the considered model, we see that the solutions show close agreement.
Further, (LADM) needs no perturbation parameter which restrict the applicability of the method.
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Figure 3: Comparison of solutions of the proposed model (1.1) at α = 0.95 for the compartments Sh,Eh,Sv,Ev by using (LADM)
and (HPM) method.
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Figure 4: Comparison of solutions of the proposed model (1.1) for the compartment Iv at α = 0.95 by using (LADM) and (HPM).

6. Conclusion

In this research work, we presented a fractional order model of Pine wilt disease with bilinear incident
rate. Using Laplace Adomian decomposition method (LADM), we obtained the numerical solution of the
fractional order model (3.1). The concerned solutions has been compared with the solutions obtained from
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(RK4) method at classical order which are almost the same. Therefore, we concluded that the considered
technique is a powerful tool as compared to (RK4) and simple Adomain decomposition method (ADM),
to find numerical solutions of nonlinear fractional differential equations.

We used two mathematical tools in this research work, fractional differential operator and (LADM)
method. The advantage of fractional order differential operator is that it is global operator rather than
local. As compared to integer order differential operator, fractional order differential operator helps us to
explore the dynamical behavior of various complex systems in more sophisticated way. One can observe
that Pine wilt disease model (3.1) with fractional order derivative has more degree of freedom, in order of
derivative involved in the system and therefore can be varied to obtain various responses of the concerned
compartment in the model. The second tool used in this paper is (LADM) method. The impact of this
method is that, it do not need discrimination, liberalizations or other restrictive assumptions, in process
of exploring the solution of both linear and nonlinear (FODEs) and (FPDEs). Moreover, it do not need
any predefined parameter unlike required in (HPM) and (HAM) methods. Also it is not required to have
suitable step size, which is essential protocol in RK4 method. The solutions obtained via (LADM) method
is free from rounding of data and only computing few terms yield us accurate solutions, that are very
close to exact solutions for highly nonlinear problems. The numerical computations and implementation
were carried out by using Maple 16.
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