On Fuzzy Isomorphism Theorem Of Hypernear-modules

M. Aliakbarnia. Omran¹, Y. Nasabi², E. Hendoukolaie³

¹Amol Institution of higher education, Amol, Iran, Mehdimran@gmail.com
²Young Researchers Club, Islamic Azad University, Ayatollah Amoli Branch, Amol, Iran, Yaser.nasabi@yahoo.com
³Young Researchers Club, Islamic Azad University, Ayatollah Amoli Branch, Amol, Iran, Edrishendoii@gmail.com

Abstract
In this paper, introduce the concept of normal fuzzy subhypernear-modules of hypernear-modules and establish three isomorphism theorems of hypernear-modules by using normal fuzzy subhypernear-modules.

Keywords: Near-module, Hypernear-module, Normal fuzzy subhypernear-module, Isomorphism theorems

1 Introduction
Hyperstructures, in particular hypergroups, were introduced in 1934 by a French mathematician, Marty, at the VIIIth Congress of Scandinavian Mathematicians ([20]). Since then, hundreds of papers and several books have been written on this topic. Nowadays, hyperstructures have a lot of applications to several domains of mathematics and computer science see [1, 2, 4, 6, 7, 9, 13], and they are studied in many countries of Europe, America and Asia. In 1971, Rosenfeld [23] introduced fuzzy sets in the context of group theory and formulated the concept of a fuzzy subgroup of a group. Since then, many researchers are engaged in extending the concepts of abstract algebra to the framework of the fuzzy setting. In 1990 Dasic [10] has introduced the notation of hypernear-rings in a particular case. The hypernear-rings generalize the concept of near-ring. More recently, Sen, Ameri and Chowdhury introduced and analyzed fuzzy semihypergroups in [24]. The fuzzy hyperring notion is defined and studied in [17]. Ameri and Hendoukolaie introduced and analyzed fuzzy hypernear-ring and a fuzzy hypernear-module on a hypernear-ring in [2, 3]. In [14] Hendoukolaie analyzed the fuzzy homomorphism between Hypernear-rings and in [15] Hendoukolaie, Ghasemi, Ghasemi introduced and analyzed the fuzzy isomorphism theorem of \(\Gamma \)-hypernear-rings by \(\Gamma \)-hyperideals. J. Zhan, B. Davvaz, K.P. Shum, introduced the concept of normal fuzzy
subhypermodules of hypermodules and analized three isomorphism theorems of hypermodules by using normal fuzzy subhypermodules in [29]. In this paper, introduce the concept of normal fuzzy subhypernear-modules of hypernear-modules and establish three isomorphism theorems of hypernear-modules by using normal fuzzy subhypernear-modules.

2 Preliminaries

First of all, recalled some notions and results that used in the following paragraphs. (see [1],[5],[6],[20]). A nonempty set \(R \) with two binary hyperoperations " \(\cdot \) and " \(+ \) is called a \textit{Near-ring} if:

\begin{itemize}
 \item [(i)] \((R, +)\) is a group;
 \item [(ii)] \((R, \cdot)\) is a semigroup;
 \item [(iii)] \(x \cdot (y + z) = x \cdot y + x \cdot z, \quad \forall x, y, z \in R\).
\end{itemize}

\textbf{Definition 2.1} A right \textit{\(R \)-nearmodule} \(M \) over a \textit{Near-ring} \(R \) consists of an group \((M,+)\) and an operation \(M \times R \rightarrow M \) such that for all \(x, y \) of \(M \) and \(r, s \) of \(R \), we have:

\begin{itemize}
 \item [(i)] \((x + y).r = x.r + y.r\);
 \item [(ii)] \(x.(r + s) = x.r + x.s\);
 \item [(iii)] \(x.(r.s) = (x.r).s\);
 \item [(iv)] \(x.1_R = x\) if \(R \) has multiplicative identity \(1_R \).
\end{itemize}

\textbf{Example 2.2} every module \(M \) over a ring \(R \) is a near-module.

\textbf{Example 2.3} If \(K \) is a field, then the concepts \(K \)-\textit{vector space} (a vector space over \(K \)) and \(K \)-\textit{nearmodule} are identical.

Let \(H \) be a nonempty set and let \(P^\star(H) \) be the set of all nonempty subsets of \(H \). A \textit{hyperoperation} on \(H \) is a map \(\circ : H \times H \rightarrow P^\star(H) \) and the couple \((H, \circ)\) is called a \textit{hypergroupoid}.

If \(A \) and \(B \) are nonempty subsets of \(H \), then we denote

\[A \circ B = \bigcup_{a \in A, b \in B} a \circ b, \quad A \circ x = A \circ \{x\}, \quad x \circ B = \{x\} \circ B. \]

A hypergroupoid \((H, \circ)\) is called a \textit{semihypergroup} if for all \(x, y, z \) of \(H \) we have

\[(x \circ y) \circ z = x \circ (y \circ z), \quad \text{which means that} \quad \bigcup_{a \in x, b \in y, c \in z} a \circ b = \bigcup_{a \in x, b \in y} a \circ b.\]

An element \(e \) of \(H \) is called an \textit{identity} (scalar identity) of \((H, \circ)\) if for all \(a \in H \), we have \(a \in (e \circ a) \cap (e \circ a), \quad ([a] = (e \circ a) \cap (e \circ a)).\)

A \textit{hypergroup} is a semihypergroup such that for all \(x \in H \), we have \(x \circ H = H = H \circ x.\)

A \textit{subhypergroup} \((K, \circ)\) of \((H, \circ)\) is a nonempty set \(K \), such that for all \(k \in K \), we have \(k \circ K = K = k \circ K.\)

\textbf{Definition 2.4} The triple \((R, +, \cdot)\) is a Hypernear\textit{ring} if:
(1) \((R, +)\) is a quasicanonical hypergroup, i.e. the following axioms hold for \((R, +)\):

(i) \((x + y) + z = x + (y + z), \forall x, y, z \in R;\)

(ii) \(\exists 0 \in R\) such that \(x + 0 = 0 + x, \forall x \in R;\)

(iii) \(\forall x \in H, \exists x' \in H\) such that \(0 \in (x + x') \cap (x' + x);\)

(iv) \(\forall x, y, z \in R\) and \(z \in x + y \implies x \in z + (-y), \quad y \in (-x) + z.\)

(2) \((R, \cdot)\) is a semihypergroup having \(0\) as a right absorbing element, i.e. \(0 \cdot x = 0, \forall x \in R;\)

(3) \((x + y) \cdot z = x \cdot z + y \cdot z, \forall x, y, z \in R.\)

Let \((R, +, \cdot)\) be a hypernear-ring. A non-empty subset \(A\) of \(R\) is called a subhypernear-ring of \(R\) if \((A, +, \cdot)\) itself a hypernear-ring. A subhypernear-ring \(A \subseteq R\) is called normal if for all \(x \in R\) holds:

\[x + A - x \subseteq A. \]

Since \(A \subseteq x + A - x, \) it follows \(A = x + A - x, \) for all \(x \in R.\)

Definition 2.5 Let \((R, +, \cdot)\) be a hypernear-ring. A nonempty set \(M\), endowed with two hyperoperations \(\oplus, \cdot\) is called a right hypernear-module over \((R, +, \cdot)\) if the following conditions hold:

1. \((M, \oplus)\) is a hypergroup (not necessarily commutative).
2. \(\cdot: M \times R \to P^*(M)\) is such that for all \(a, b\) of \(M\) and \(r, s\) of \(R\), we have:

 - (i) \((a \oplus b) \otimes r = (a \otimes r) \oplus (b \otimes r);\)
 - (ii) \(a \otimes (r + s) = (a \otimes r) \oplus (a \otimes s);\)
 - (iii) \(a \otimes (r \cdot s) = (a \otimes r) \otimes s;\)
 - (iv) \(a \otimes 0 = 0\) and \(0 \cdot r = 0.\)

Let \((M, \oplus, \cdot)\) be a hypernear-module. A non-empty subset \(A\) of \(M\) is called a subhypernear-module of \((M, \oplus, \cdot)\) if \((A, \oplus, \cdot)\) itself a hypernear-module.

A subhypernear-module \(A\) of \(M\) is called normal if the relation \(x + A - x \subseteq A\) holds for all \(x \in M.\)

Example 2.6 Every right hypermodule \(M\) over a hyperring \(R\) is a right hypernear-module.

Example 2.7 Let \((R, +)\) be a hypergroup (not necessarily commutative) and let \((M_0(R), +, \cdot)\) be a hypernear-ring of mapping from \(R\) into itself (see[8]). Then \((R, \oplus, \cdot)\) be a hypernear-ring over \((M_0(R), +, \cdot)\), Where the action \(\mu: R \times M_0(R) \to R\) is given by \((a, f) \to (a)f\) , for all \(a \in R\) and \(f \in M_0(R).\)

Let \(A\) be a subhypernear-module of an \(R\)-hypernear-module \(M.\) Then the hyperquotient group \(M/A = \{m + A | m \in M\}\) endowed with the following external composition \(M/A \times R \to M/A, (m + A, r) \to mr + A,\) is an \(R\)-hypernear-module, and \(M/A\) is called the quotient \(R\)-hypernear-module of \(M\) by \(A.\)

In what follows, all the hypernear-modules are right hypernear-modules.

Definition 2.8 A fuzzy subset \(\mu\) of a hypernear-module \(M\) over a hypernear-ring \(R\) is called a
fuzzy subhypernear-module of M if the following conditions hold:

(i) $\min\{\mu(x), \mu(y)\} \leq \inf_{z \in x+y} \mu(z)$, for all $x, y \in M$;

(ii) $\mu(x) \leq \mu(-x)$, for all $x \in M$;

(iii) $\mu(x) \leq \mu(x + y)$, for all $r \in R$ and $x \in M$.

A fuzzy subhypernear-module μ of M is called normal if $\mu(y) \leq \inf_{z \in x+y} \mu(z)$, for all $x, y \in M$.

If μ be a fuzzy subhypernear-module of M, then it is clear that $\mu(-x) = \mu(x)$, $\min\{\mu(x), \mu(y)\} \leq \inf_{z \in x+y} \mu(z)$, for all $x, y \in M$.

Let M be an R-hypernear-module. Then, for a fuzzy subset μ of M, the level subset μ_t and the strong level subset $\mu^>_t$ are defined by

$$\mu_t = \{x \in M \mid \mu(x) \geq t\}, t \in [0,1]$$

and

$$\mu^>_t = \{x \in M \mid \mu(x) > t\}, t \in [0,1].$$

A fuzzy subhypernear-module can be characterized by using its level subsets and strong level subsets. The following proposition is obvious.

Proposition 2.9 Let μ be a fuzzy subset of an R-hypernear-module M. Then the following statements are equivalent:

1. μ is a fuzzy subhypernear-module of M,
2. each non-empty strong level subset of μ is a subhypernear-module of M,
3. each non-empty level subset of μ is a subhypernear-module of M.

Definition 2.10 A mapping $f : M \to M'$ is called a homomorphism if for all $a, b \in M$ and $r \in R$, we have:

$$f(a + b) = f(a) + f(b), \quad f(ar) = f(a)r \quad \text{and} \quad f(0) = 0$$

It is clear that a homomorphism f is an isomorphism if f is both injective and surjective and write $M \cong M'$ if M is isomorphic to M'.

3 The isomorphism theorem

In what follows, M is always a hypernear-module over a hypernear-ring R unless stated otherwise.

Definition 3.1 Let μ be a normal fuzzy subhypernear-module of M. Define the following relation on M.

$$x \equiv y \ (\text{mod} \mu) \quad \text{if and only if there exists } \alpha \in (x - y) \text{ such that } \mu(\alpha) = \mu(0).$$

now denote the above relation by $x \mu^* y$. Then, for this relation, we have the following lemma.

Lemma 3.2 The relation μ^* is an equivalence relation.

Proof. For all $x, y, z \in M$, we have

(i) $0 \in x - x$ implies $x \mu^* x$, i.e., μ^* is reflexive;

(ii) if $x \mu^* y$ then there exist $\alpha \in (x - y)$ such that $\mu(\alpha) = \mu(0)$. Since
\(\mu(\alpha) = \mu(-\alpha) \) and \(-\alpha \in (y-x), \ y\mu^* x \). Thus, \(\mu^* \) is symmetric.

(iii) To prove that \(\mu^* \) is transitive, let \(x\mu^* y \) and \(y\mu^* z \). Then there exist then there exist \(\alpha \in (x-y) \) and \(\beta \in (y-z) \) such that \(\mu(\alpha) = \mu(\beta) = \mu(0) \). Therefore, \(x \in \alpha + y \) and \(-z \in y + \beta \). Hence, we have \(-z+x\subseteq -y+\beta+\alpha+y \), and so for every \(a \in -z+x \), there exists \(b \in \beta+\alpha \) such that \(a \in -y+b+y \). Since \(\mu \) is normal, \(\mu(b) \leq \mu(a) \) and \(\mu(0) = \min\{\mu(\alpha), \mu(\beta)\} \leq \mu(b) \). These imply that \(\mu(b) = \mu(0) \). Consequently, we have \(a \in -z+x \) and \(\mu(a) = \mu(0) \), and so \((-z)\mu'(-x)\), that is, \(x\mu^* z \). This completes the proof.

Lemma 3.3 If \(x\mu^* y \), then \(\mu(x) = \mu(y) \).

Proof. If \(x\mu^* y \) then there exist \(\alpha \in x-y \) such that \(\mu(\alpha) = \mu(0) \). Since \(\alpha \in x-y \) implies \(x \in \alpha + y \) and so \(\min\{\mu(\alpha), \mu(y)\} \leq \mu(x) \), that is, \(\mu(y) \leq \mu(x) \). Similarly, we have \(\mu(x) \leq \mu(y) \). Hence \(\mu(x) = \mu(y) \).

Let \(\nu \) be an equivalence relation on \(M \). If \(A, B \) are non-empty subsets of \(M \), then we write \(A \nu B \) to denote that

\[
\forall a \in A, \exists b \in B \quad \text{such that} \quad a \nu b \quad \text{and} \quad \forall b \in B, \exists a \in A \quad \text{such that} \quad a \nu b.
\]

An equivalence relation \(\nu \) on \(M \) is called regular if for every \(x, y \in M \),

\[
x \nu y \Rightarrow x + z \nu y + z, \quad \text{for all} \quad z \in M.
\]

Lemma 3.4 \(\mu^* \) is a regular relation.

Proof. Suppose that \(x\mu^* y \). Then there exists \(\alpha \in x-y \) such that \(\mu(\alpha) = \mu(0) \). Now, for every \(z \in M \) and \(a \in x+z \), we have \(x \in a-z \) which implies that \(x-y \subseteq a-z-y \) or \(x-y \subseteq a-(y+z) \). Hence \(\alpha \in a-(y+z) \) and so there exists \(b \in y+z \) such that \(\alpha \in a-b \). Thus, \(a\mu^* b \) and so \((x+z)\mu^*(y+z) \).

Let \(\mu^*[x] \) be the equivalence class containing the element \(x \). Then we denote \(M/\mu \) the set of all equivalence classes, i.e., \(M/\mu = \{\mu^*[x] | x \in M\} \). Define the following two operations on \(M/\mu \):

\[
\mu^*[x]\mu^*[y] = \{\mu^*[z] | z \in \mu^*[x] + \mu^*[y]\};
\]

\[
\mu^*[x]^r = \mu^*[x^r].
\]

Since \(\mu^* \) is regular, we can easily deduce the following theorem:

Theorem 3.5 \(M/\mu, (\cdot)^* \) is a hypernear-module.

Let \(f : M \rightarrow M' \) be a map and \(\mu, \lambda \) be the fuzzy subsets of \(M \). \(M' \) respectively. Then the image \(f(\mu) \) of \(\mu \) is the fuzzy subset of \(M \) defined by

\[
f(\mu)(y) = \{\ell \sup_x f^{\cdot-1}(y) \{x\} \} \quad \text{if} \quad f^{\cdot-1}(y) \neq 0 \quad \text{otherwise}.
\]
for all \(y \in M' \). The inverse image \(f^{-1}(\lambda) \) of \(\lambda \) is the fuzzy subset of \(M \) defined by
\[
f^{-1}(\lambda)(x) = \lambda(f(x)) \quad \text{for all } x \in M.
\]
The following two lemmas can be easily proved and hence, we omit the details.

Lemma 3.6 Let \(f : M \to M' \) be a homomorphism of hypernear-modules and \(\mu \) a (normal) fuzzy subhypernear-module of \(M \). Then \(f(\mu) \) is a (normal) fuzzy subhypernear-module of \(M' \).

Lemma 3.7 Let \(f : M \to M' \) be a homomorphism of hypernear-modules and \(\mu, \lambda \) a normal fuzzy subhypernear-module of \(M, M' \), respectively. Then, the following statements hold:

1. If \(f \) is an epimorphism, then \(f(f^{-1}(\lambda)) = \lambda \);
2. If \(\mu \) is a constant on \(\text{Ker} f \), then \(f^{-1}(f(\mu)) = \mu \).

Let \(\mu \) be a normal subhypernear-module of \(M \). We now denote \(M_{\mu} = \{ x \in M \mid \mu(x) = \mu(0) \} \). Clearly, \(M_{\mu} \) is a normal subhypernear-module of \(M \). We now use the normal subhypernear-module of \(M \) to establish the isomorphism theorems.

Theorem 3.8 (First fuzzy isomorphism theorem) Let \(f : M \to M' \) be an epimorphism of hypernear-modules and \(\mu \) a normal fuzzy subhypernear-module of \(M \) with \(M_{\mu} \supseteq \text{Ker} f \). Then \(M/\mu \cong M'/f(\mu) \).

Proof. First note that \(M/\mu \) and \(M'/f(\mu) \) are hypernear-modules. Now, Define \(\varphi : M/\mu \to M'/f(\mu) \) by \(\varphi(\mu^*[x]) = f(\mu)^*[f(x)] \), for all \(x \in M \). Then \(\varphi \) is clearly well-defined. In fact, if \(\mu^*[x] = \mu^*[y] \), then \(\mu(x) = \mu(y) \) by Lemma 3.3. Since \(M_{\mu} \supseteq \text{Ker} f \), \(\mu \) is a constant on \(\text{Ker} f \). By Lemma 3.7(ii) we have \(f^{-1}(f(\mu)) = \mu \). Thus, \(f^{-1}(f(\mu))(x) = f^{-1}(f(\mu))(y) \). It follows from above the definition that \(f(\mu)(f(x)) = f(\mu)(f(y)) \). Hence we \(f(\mu)^*[f(x)] = f(\mu)^*[f(y)] \). Moreover, we have
\[
\varphi(\mu^*[x][\mu^*[y]]) = \varphi(\mu^*[z]) \quad \text{for all } x, y, z \in M.
\]
(i) \(f(\mu)^*[f(x)] + f(\mu)^*[f(y)] = \varphi(\mu^*[x]) + \varphi(\mu^*[y]) \);
(ii) \(f(\mu^*[x]) = \varphi(\mu^*[x]) = f(\mu)^*[f(x)] \);\(f(\mu)^*[f(x)] = f(\mu)^*[f(x)] \);\(f(\mu)^*[f(x)] = f(\mu)^*[f(x)] \);
(iii) \(\varphi(\mu^*[0]) = f(\mu)^*[0] = f(\mu)^*[0] \).

Hence, we have shown that \(\varphi \) is a homomorphism. Clearly \(\varphi \) is an epimorphism. To show that \(\varphi \) is a monomorphism, let \(f(\mu)^*[f(x)] = f(\mu)^*[f(y)] \). Then \(f(\mu)(f(x)) = f(\mu)(f(y)) \), that is \(f^{-1}(f(\mu))(x) = f^{-1}(f(\mu))(y) \). Hence \(\mu(x) = \mu(y) \), and so \(\mu^*[x] = \mu^*[y] \), therefore, \(M/\mu \cong M'/f(\mu) \).

Lemma 3.9 Let \(f : M \to M' \) be an epimorphism of hypernear-modules. If \(\lambda \) be a (normal) fuzzy subhypernear-module of \(M' \), then \(f^{-1}(\lambda) \) is a (normal) fuzzy subhypernear-module of \(M \).

Corollary 3.10 Let \(f : M \to M' \) be an epimorphism of hypernear-modules. If \(\lambda \) be a normal fuzzy subhypernear-module of \(M' \), then \(Mf^{-1}(\lambda) \cong M/\lambda \).
Proof. First we observe that $Mf^{-1}(\lambda)$ and M/λ are hypernear-modules by Lemma 3.9. In order to prove that $Mf^{-1}(\lambda) \cong ker f$, we consider $x \in Ker f$. Then we have $f(x) = f(0)$, and hence $\lambda(f(x)) = \lambda(f(0))$, i.e., $f^{-1}(\lambda)(x) = f^{-1}(\lambda)(0)$, This leads to $x \in Mf^{-1}(\lambda)$, and so $Mf^{-1}(\lambda) \cong ker f$. By Theorem 3.8, we have $Mf^{-1}(\lambda) \cong M/\lambda$.

Now, we proceed to establish the Second and Third Fuzzy Isomorphism Theorems. The following two lemmas are obvious.

Lemma 3.11 Let A be a normal subhypernear-module of M and μ a normal fuzzy subhypernear-module of M. Then the following statements hold:

(i) If μ is restricted to A, then μ is a normal fuzzy subhypernear-module of A;

(ii) A/μ is a normal subhypernear-module of M/μ.

Lemma 3.12 If μ and λ are any two normal fuzzy subhypernear-modules of M, then so is $\mu \cap \lambda$.

We now prove our second fuzzy isomorphism theorem:

Theorem 3.13 (Second fuzzy isomorphism theorem) If μ and λ are any two normal fuzzy subhypernear-modules of M with $\mu(0) = \lambda(0)$, then,

$$M/\mu(\mu \cap \lambda) \cong (M/\mu + M/\lambda)/\lambda.$$

Proof. By Lemmas 3.11 and 3.12, λ and $\mu \cap \lambda$ are two normal fuzzy subhypernear-modules of $M/\mu + M/\lambda$ and M/μ, respectively. Now, it is clear that $(M/\mu + M/\lambda)/\lambda$ and $M/\mu(\mu \cap \lambda)$ are both hypernear-modules. Define $\psi : M/\mu \rightarrow (M/\mu + M/\lambda)/\lambda$ by $\psi(x) = \lambda^\delta[x]$, for all $x \in M/\mu$. Then, it is easy to check that ψ is an epimorphism. To show that $Ker \psi = M_{\mu \cap \lambda}$, we consider the following equalities:

$$Ker \psi = \{x \in M/\mu \mid \psi(x) = \lambda^\delta[0]\} = \{x \in M/\mu \mid \lambda^\delta[x] = \lambda^\delta[0]\} = \{x \in M/\mu \mid \lambda(x) = \lambda(0)\} = \{x \in M/\mu \mid \mu(x) = \mu(0) = \lambda(0) = \lambda(x)\} = \{x \in M/\mu \mid x \in M/\lambda\} = M_{\mu \cap \lambda}.$$

Therefore, $M/\mu(\mu \cap \lambda) \cong (M/\mu + M/\lambda)/\lambda$.

Theorem 3.14 (Third fuzzy isomorphism theorem) Let μ and λ are any two normal fuzzy subhypernear-modules of M with $\mu \geq \lambda$ and $\mu(0) = \lambda(0)$, then,

$$(M/\mu)(M/\lambda) \cong M/\mu.$$

Proof. By Lemma 3.11(ii), it is known that M/λ is a normal subhypernear-module of M/λ. Define $f : M/\lambda \rightarrow M/\mu$ by $f(\lambda^\delta[x]) = \mu^\delta[x]$, for all $x \in M$. If $\lambda^\delta[x] = \lambda^\delta[y]$, for all $x, y \in M$, then there exists $\alpha \in x - y$ such that $\lambda(\alpha) = \lambda(0)$. Since $\mu \geq \lambda$ and $\mu(0) = \lambda(0)$,
we have $\mu(\alpha) \geq \lambda(\alpha) = \lambda(0) = \mu(0)$. This implies that $\mu(\alpha) = \mu(0)$, and so $\mu^\lambda[x] = \mu^\lambda[y]$. Hence, f is well-defined. Moreover, we have

(i) \[f(\lambda^\mu[x])(\lambda^\mu[y]) = f(\{\lambda^\mu[z] \in \lambda^\mu[x] + \lambda^\mu[y]\}) = \{\mu^\lambda[z] \in \lambda^\mu[x] + \lambda^\mu[y]\} = \mu^\lambda[\lambda^\mu[x]](\mu^\lambda[\lambda^\mu[y]]) = \mu^\lambda[x](\mu^\lambda[y]) = f(\lambda^\mu[x])f(\lambda^\mu[y]) \]

(ii) $f(\lambda^\mu[x] * r) = f(\lambda^\mu[x.r]) = \mu^\lambda[x] * r = f(\lambda^\mu[x]) * r$, $f(\lambda^\mu[0]) = \mu^\lambda[0] = 0$.

Hence, f is a homomorphism. Clearly, f is an epimorphism. Now we show that $\text{Ker} f = M_\mu/\lambda$.

In fact

$$ker f = \{\lambda^\mu[x] \in M/\lambda \mid f(\lambda^\mu[x]) = \mu^\lambda[0]\}$$

$$= \{\lambda^\mu[x] \in M/\lambda \mid \mu^\lambda[x] = \mu^\lambda[0]\}$$

$$= \{\lambda^\mu[x] \in M/\lambda \mid \mu(x) = \mu[0]\}$$

$$= \{\lambda^\mu[x] \in M/\lambda \mid x \in M_\mu\}$$

$$= M_\mu/\lambda.$$

Therefore, $(M/\lambda)/(M_\mu/\lambda) \cong M/\mu$.

References