COMMON FIXED POINT THEOREMS FOR A PAIR OF MAPPINGS IN COMPLEX-VALUED METRIC SPACES

R. K. VERMA
Department of mathematics, Govt. C.L.C. College Patan
Distt.-Durg (C.G.) 491111 INDIA
email:rohitverma1967@rediffmail.com

H. K. PATHAK
School of Studies in Mathematics,
Pt. Ravishankar Shukla University, Raipur (C.G.) 492010 INDIA
email:khpathak05@gmail.com

Article history:
Received March 2011
Accepted December 2012
Available online January 2013

Abstract
The purpose of this paper is to prove common fixed point theorems for a pair of mappings satisfying a quasi-contraction condition in a complex-valued metric space \((X, d)\). For this, we have defined the \(\text{max}\) function for the partial order \(\leq\) in complex-valued metric \(d\).

Keywords: Common fixed point, contraction mapping, contractive condition, Banach contraction condition, Complex-valued metric space.

2010 Mathematics Subject Classification: Primary 47H10; Secondary 54H25.
1. Introduction.

An ordinary metric d is a real-valued function from a set $X \times X$ into \mathbb{R}, where X is a nonempty set. That is, $d: X \times X \rightarrow \mathbb{R}$. A complex number $z \in \mathbb{C}$ is an ordered pair of real numbers, whose first co-ordinate is called $Re(z)$ and second coordinate is called $Im(z)$. Thus a complex-valued metric d would be a function from a set $X \times X$ into \mathbb{C}, where X is a nonempty set and \mathbb{C} is the set of complex number. That is, $d: X \times X \rightarrow \mathbb{R}$.

Define a partial order \leq on \mathbb{C} as follows; let $z_1, z_2 \in \mathbb{C}$.

$$z_1 \leq z_2 \text{ if and only if } Re(z_1) \leq Re(z_2), \text{ } Im(z_1) \leq Im(z_2).$$

It follows that $z_1 \leq z_2$ if one of the following conditions is satisfied:

(i) $Re(z_1) = Re(z_2), \text{ } Im(z_1) < Im(z_2)$,

(ii) $Re(z_1) < Re(z_2), \text{ } Im(z_1) = Im(z_2)$,

(iii) $Re(z_1) < Re(z_2), \text{ } Im(z_1) < Im(z_2)$,

(iv) $Re(z_1) = Re(z_2), \text{ } Im(z_1) = Im(z_2)$.

In (i), (ii) and (iii), we have $|z_1| < |z_2|$. In (iv), we have $|z_1| = |z_2|$. So that, $|z_1| \leq |z_2|$. In particular, $z_1 \not\leq z_2$ if $z_1 \neq z_2$ and one of (i), (ii), (iii) is satisfy. In this case $|z_1| < |z_2|$. Also $z_1 \leq z_2$ if only (iii) satisfy. Further,

$$0 \leq z_1 \not\leq z_2 \text{ implies } |z_1| < |z_2|,$$

$$z_1 \leq z_2, \text{ } z_2 < z_3 \text{ implies } z_1 < z_3.$$

From this definition of complex-valued metric d, Azam et. al. [1] defined the complex-valued metric space (X, d) in the following way:

Definition 1.1. Let X be a nonempty set. Suppose that the mapping $d: X \times X \rightarrow \mathbb{C}$ satisfies the following conditions:

(C1) $0 \leq d(x, y)$ for all $x, y \in X$ and $d(x, y) = 0$ if and only if $x = y$;

(C2) $d(x, y) = d(y, x)$ for all $x, y \in X$;

(C3) $d(x, y) \leq d(x, z) + d(z, y)$ for all $x, y, z \in X$.

Then d is called a complex-valued metric in X, and (X, d) is called a complex-valued metric space.
A point $x \in X$ is called an **interior point** of $A \subseteq X$ if there exists $r \in C$, where $0 < r$, such that

$$B(x, r) = \{y \in X: d(x, y) < r\} \subseteq A.$$

A point $x \in X$ is called a **limit point** of $A \subseteq X$, if for every $0 < r \in C$,

$$B(x, r) \cap (AX) \neq \emptyset.$$

The set A is called **open** whenever each element of A is an interior point of A. A subset B is called **closed** whenever each limit point of B belongs to B.

The family $F := \{B(x, r): x \in X, 0 < r\}$ is a sub-basis for a Hausdorff topology τ on X. Let $\{x_n\}$ be a sequence in X and $x \in X$. If for every $c \in C$ with $0 < c$, there exists $n_0 \in N$ such that for all $n > n_0$, $d(x_n, x) < c$, then $\{x_n\}$ is called **convergent**. Also, sequence $\{x_n\}$ converges to x (written as, $x_n \to x$ or $\lim_{n \to \infty} x_n = x$); and x is the **limit point** of $\{x_n\}$. The sequence $\{x_n\}$ converges to x if and only if

$$\lim_{n \to \infty} |d(x_n, x)| = 0.$$
If for every $c \in C$ with $0 < c$, there exists $n_0 \in N$ such that for all $n > n_0$,

$$d(x_n, x_{n+m}) < c,$$

then $\{x_n\}$ is called **Cauchy sequence** in (X, d). If every Cauchy sequence converges in X, then X is called a complete complex-valued metric space. The sequence $\{x_n\}$ is called **Cauchy** if and only if $\lim_{n \to \infty} |d(x_n, x_{n+m})| = 0$.

Definition 1.2. We define the ‘max’ function for the partial order relation \leq by:

1. $\max\{z_1, z_2\} = z_2$ if and only if $z_1 \leq z_2$,
2. $z_1 \leq \max\{z_2, z_3\}$ implies $z_1 \leq z_2$, or $z_1 \leq z_3$.

Using Definition 1.2 we have the following Lemma:
Lemma 1.3. Let \(z_1, z_2, z_3, \ldots \in C \) and the partial order relation \(\leq \) is defined on \(C \). Then

(i) If \(z_1 \leq \max\{z_2, z_3\} \) then \(z_1 \leq z_2 \) if \(z_3 \leq z_2 \);

(ii) If \(z_1 \leq \max\{z_2, z_3, z_4\} \) then \(z_1 \leq z_2 \) if \(\max\{z_3, z_4\} \leq z_2 \);

(iii) If \(z_1 \leq \max\{z_2, z_3, z_4, z_5\} \) then \(z_1 \leq z_2 \) if \(\max\{z_3, z_4, z_5\} \leq z_2 \), and so on.

Since \((X, d)\) is a complex-valued metric space, the ‘usual metric’ in \(\mathbb{R} \) is not definable; as shown in Example 7 [1]. Keeping this in view, we need to generalize the Banach contraction principal [2] in complex-valued metric space, as follows:

Theorem 1.4. Let \((X, d)\) be a complete, complex-valued metric space and \(T \) be a mapping of \(X \) into itself, satisfying:

\[
d(Tx, Ty) \leq k d(x, y), \quad \text{for all } x, y \in X; \tag{1.1}
\]

where \(k \) is a constant in \((0,1)\). Then \(T \) has a unique common fixed point in \(X \).

Proof. For an arbitrary \(x_0 \) in \(X \), we have \(T^nx_0 = x_n \). The sequence \(\{x_n\} \) is Cauchy. For, we have since

\[
d(x_1, x_2) = d(Tx_0, Tx_1) \leq k d(x_0, x_1),
\]

\[
d(x_2, x_3) = d(Tx_1, Tx_2) \leq k d(x_1, x_2) \leq k^2 d(x_0, x_1),
\]

\[
\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots
\]

\[
d(x_n, x_{n+1}) = d(Tx_{n-1}, Tx_n) \leq k d(x_{n-1}, x_n) \leq k^n d(x_0, x_1) \quad \text{(A)}
\]

Hence for any \(m > n, \quad m, n \in \mathbb{N} \)

\[
d(x_m, x_{n+m}) \leq d(x_m, x_{n+1}) + d(x_{n+1}, x_{n+2}) + \ldots + d(x_{n+m-1}, x_{n+m})
\]

\[
\leq k^n d(x_0, x_1) + k^{n+1} d(x_0, x_1) + \ldots + k^{n+m-1} d(x_0, x_1)
\]
\begin{align*}
\leq & k^n d(x_0, x_1)/(1-k) \leq d(x_0, x_1), \quad \text{as } 0 < k < 1.
\end{align*}

Therefore \(|d(x_n, x_{n+m})| \leq \frac{k^n}{(1-k)^2} \rightarrow 0\); as \(m, n \rightarrow \infty\). Thus \(\{x_n\}\) is a Cauchy sequence. The completeness of \(X\) implies that sequence \(\{x_n\}\) converges to some \(x \in X\). We claim that \(x = Tx\), otherwise \(|d(x, Tx)| = |z| > 0\), and we would then have

\[|d(x, Tx)| = |z| \leq |d(x, x_n) + d(x_n, Tx)| = |d(x, x_n) + d(Tx_{n-1}, Tx)|\]

\[\leq |d(x, x_n)| + |d(Tx_{n-1}, Tx)| = |d(x, x_n)| + k|d(x_{n-1}, x)| \rightarrow 0 \text{ as } n \rightarrow \infty.
\]

Thus \(x = Tx\). The uniqueness of \(x\) follows easily. For, if \(x'\) be another fixed point then

\[d(x, x') \leq d(x, Tx) + d(Tx, x') = d(Tx, Tx') \leq k d(x, x'), \quad \text{by (1.1)}.
\]

Taking modulus in above, we have

\[|d(x, x')| \leq k|d(x, x')| < |d(x, x')|,
\]

a contradiction. Thus \(x\) is unique fixed point in \(X\). This completes the proof.

2. Main Results

Theorem 2.1. Let \((X, d)\) be a complete complex-valued metric space and mappings \(S, T : X \rightarrow X\) satisfying:

\[d(Sx, Ty) \leq h \max\{d(x, y), d(x, Sx), d(y, Ty), d(x, Ty), d(y, Sx)\} \quad (2.1)
\]
for all $x, y \in X$; where $0 < h < \frac{1}{2}$. Then S and T have a unique common fixed point in X.

Proof. Choose an arbitrary point x_0 in X. Sequence $\{x_n\}$ can be formed in X such that $Sx_0 = x_1$, $Tx_1 = x_2$, $Sx_2 = x_3$, $Tx_3 = x_4$,

\[Sx_{2n} = x_{2n+1}, \quad Tx_{2n+1} = x_{2n+2}. \]

(2.2)

We show that the sequence $\{x_n\}$ is Cauchy. For, putting $x = x_{2k}$ and $y = x_{2k+1}$ in (2.1), we have

\[
d(x_{2k+1}, x_{2k+2}) = d(Sx_{2k}, Tx_{2k+1}) \]

\[
\leq h \max\{d(x_{2k}, x_{2k+1}), d(x_{2k}, Sx_{2k}), d(x_{2k+1}, Tx_{2k+1}), d(x_{2k}, Tx_{2k+1}), d(x_{2k+1}, Sx_{2k})\} \]

\[
= h \max\{d(x_{2k}, x_{2k+1}), d(x_{2k}, x_{2k+1}), d(x_{2k+1}, x_{2k+2}), d(x_{2k}, x_{2k+1}) + d(x_{2k+1}, x_{2k+2}), 0\}, \text{ by (2.2)} \]

(2.3)

whence,

\[
d(x_{2k+1}, x_{2k+2}) \leq h [d(x_{2k}, x_{2k+1}) + d(x_{2k+1}, x_{2k+2})], \text{ as other co-ordinates are less}\]

i.e.,

\[
d(x_{2k+1}, x_{2k+2}) \leq \frac{h}{1-h}.d(x_{2k}, x_{2k+1}). \]

Similarly, by putting $x = x_{2k+2}$ and $y = x_{2k+1}$ in (2.1), we have

\[
d(x_{2k+2}, x_{2k+3}) \leq \frac{h}{1-h}.d(x_{2k+1}, x_{2k+2}). \]

Hence for each $n = 1, 2, 3, \ldots$ we have

\[
d(x_n, x_{n+1}) \leq H.d(x_{n-1}, x_n), \quad (C) \]
where $0 < H = h/(1 - h) < 1$. From this we have, inductively

$$d(x_n, x_{n+1}) \leq H \cdot d(x_{n-1}, x_n) \leq H^2 \cdot d(x_{n-2}, x_{n-1}) \leq \ldots \leq H^n \cdot d(x_0, x_1) \quad (2.3)$$

Thus for any $m > n, m, n \in \mathbb{N}$, we have

$$d(x_n, x_m) \leq d(x_n, x_{n+1}) + d(x_{n+1}, x_{n+2}) + d(x_{n+2}, x_{n+3}) + \ldots + d(x_{m-1}, x_m)$$

$$\leq H^n + H^{n+1} + H^{n+2} + \ldots + H^{m-1} \cdot d(x_0, x_1), \quad \text{by (2.3)}$$

$$\leq \frac{H^n}{1-H} \cdot d(x_0, x_1),$$

So that $|d(x_n, x_m)| \leq \frac{|H^n/(1-H)| \cdot d(x_0, x_1)|}{0}$ as $n \to \infty$.

Thus $\{x_n\}$ is a Cauchy sequence in X. Since X is complete, therefore $\{x_n\}$ converges to some point u (say) in X. We claim that u is a fixed point of S. Otherwise $u \neq Su$ and $|d(u, Su)| = |z| > 0$. From triangle inequality and using (2.1), we have successively

$$d(u, Su) \leq d(u, x_{2k+2}) + d(x_{2k+2}, Su)$$

$$\leq d(u, x_{2k+2}) + d(Tx_{2k+1}, Su)$$

$$\leq d(u, x_{2k+2}) + h \max\{d(u, x_{2k+1}), d(u, Su), d(x_{2k+1}, Tx_{2k+1}), d(u, Tx_{2k+1}), d(x_{2k+1}, Su)\}. $$

Taking magnitude in above, and using $|a+b| \leq |a|+|b|$, for all $a, b \in \mathbb{C}$, we have
\[|d(u, Su)| \leq d(u, x_{2k+2}) + h \max\{ |d(u, x_{2k+1})|, |d(u, Su)|, |d(x_{2k+1}, Tx_{2k+1})|, \]
\[|d(u, Tx_{2k+1})|, |d(x_{2k+1}, Su)| \}. \]

Letting \(n \to \infty \) we have

\[|z| = |d(u, Su)| \leq 0 + h \max\{0, |z|, 0, 0, |z|\} = h |z| < |z|, \]
a contradiction. Thus \(|z| = |d(u, Su)| = 0 \), yielding \(u = Su \).

Further, since \(X \) is complete, there exist some \(v \) in \(X \) such that \(v = Tu \). We claim that \(u = v \). If not, then from (2.1), we have

\[d(u, v) = d(Su, Tu) \leq h \max\{d(u, u), d(u, Su), d(u, Tu), d(u, Tu), d(u, Su)\} \]
\[\leq h \max\{0, 0, d(u, v), d(u, v), 0\} = h d(u, v). \]

Whence, on taking magnitude, \(|d(u, v)| \leq |h d(u, v)| < |d(u, v)| \), a contradiction.

Thus \(u = v = Tu = Su \), and \(u \) is the common fixed point of \(S \) and \(T \). For uniqueness of common fixed point, let \(u_0 \) be another common fixed point of \(S \) and \(T \). Then from (2.1), we have

\[d(u, u_0) = d(Su, Tu_0) \leq h \max\{d(u, u_0), d(u, Su), d(u_0, Tu_0), d(u, Tu_0), d(u_0, Su)\}, \]

whence,

\[|d(u, u_0)| \leq h \max\{ |d(u, u_0)|, 0, 0, |d(u, u_0)|, |d(u_0, u)|\} = h |d(u, u_0)| < |d(u, u_0)|, \]
a contradiction. Thus \(S \) and \(T \) have unique common fixed point. This completes the proof.
If the function ‘max’ has only three variables, as shown in (2.4) below, then we have the following theorem:

Corollary 2.2. Let \((X, d)\) be a complete complex-valued metric space and mappings \(S, T:X \to X\) satisfying:

\[
d(Sx, Ty) \leq h \max\{d(x, y), d(x, Sx), d(y, Ty)\}
\]

(2.4)

for all \(x, y \in X\); where \(0 < h < 1\). Then \(S\) and \(T\) have a unique common fixed point in \(X\).

Proof. In this case, eq.(B) reduces to:

\[
d(x_{2k+1}, x_{2k+2}) \leq h \max\{d(x_{2k}, x_{2k+1}), d(x_{2k}, x_{2k+1}), d(x_{2k+1}, x_{2k+2})\} = d(x_{2k}, x_{2k+1})
\]

so, eq.(C) reduces to:

\[
d(x_n, x_{n+1}) \leq h d(x_{n-1}, x_n), \text{ where } 0 < h < 1.
\]

This is eq.(A). Further proof runs smoothly as Theorem 1.4 and Theorem 2.1.

Remark. By putting \(S = T\) in above corollary, we obtain Theorem 1.4. Thus, Corollary 2.2 is a generalization of Theorem 1.4.

References.
