COMMON FIXED POINT THEOREMS FOR A PAIR OF MAPPINGS IN COMPLEX-VALUED METRIC SPACES

R. K. VERMA
Department of mathematics, Govt. C.L.C. College Patan

Distt.-Durg (C.G.) 491111, INDIA
email:rohitverma 1967@rediffmail.com

H. K. PATHAK

School of Studies in Mathematics,

Pt. Ravishankar Shukla University, Raipur (C.G.) 492010, INDIA
email:khpathak05@gmail.com

Article history:
Received March 2011
Accepted December 2012
Available online January 2013

Abstract

The purpose of this paper is to prove common fixed point theorems for a pair of mappings satisfying a quasi-contraction condition in a complex-valued metric space (X, d). For this, we have defined the 'max' function for the partial order \leq in complex-valued metric d.

Keywords: Common fixed point, contraction mapping, contractive condition, Banach contraction condition, Complex-valued metric space.

1. Introduction.

An ordinary metric d is a real-valued function from a set $X \times X$ into R, where X is a nonempty set. That is, $\mathrm{d}: \mathrm{X} \times \mathrm{X} \rightarrow \mathrm{R}$. A complex number $z \varepsilon C$ is an ordered pair of real numbers, whose first co-ordinate is called $\operatorname{Re}(z)$ and second coordinate is called $\operatorname{Im}(z)$. Thus a complex-valued metric d would be a function from a set $X \times X$ into C, where X is a nonempty set and C is the set of complex number. That is, $d: X \times X \rightarrow R$. Define a partial order \leq on C as follows; let $z_{1}, z_{2} \varepsilon C$.

$$
z_{1} \leq z_{2} \text { if and only if } \operatorname{Re}\left(z_{1}\right) \leq \operatorname{Re}\left(z_{2}\right), \operatorname{Im}\left(z_{1}\right) \leq \operatorname{Im}\left(z_{2}\right) .
$$

It follows that $z_{1} \leq z_{2}$ if one of the following conditions is satisfied:
(i) $\operatorname{Re}\left(z_{1}\right)=\operatorname{Re}\left(z_{2}\right), \operatorname{Im}\left(z_{1}\right)<\operatorname{Im}\left(z_{2}\right)$,
(ii) $\operatorname{Re}\left(z_{1}\right)<\operatorname{Re}\left(z_{2}\right), \operatorname{Im}\left(z_{1}=\operatorname{Im}\left(z_{2}\right)\right.$,
(iii) $\operatorname{Re}\left(z_{l}\right)<\operatorname{Re}\left(z_{2}\right), \operatorname{Im}\left(z_{1}\right)<\operatorname{Im}\left(z_{2}\right)$,
(iv) $\operatorname{Re}\left(z_{1}\right)=\operatorname{Re}\left(z_{2}\right), \operatorname{Im}\left(z_{1}\right)=\operatorname{Im}\left(z_{2}\right)$.

In (i), (ii) and (iii), we have $\left|z_{1}\right|<\left|z_{2}\right|$. In (iv), we have $\left|z_{1}\right|=\left|z_{2}\right|$. So that, $\left|z_{1}\right| \leq\left|z_{2}\right|$. In particular, z_{1} not $\leq z_{2}$ if $z_{1} \neq z_{2}$ and one of (i), (ii), (iii) is satisfy. In this case $\left|z_{1}\right|<\left|z_{2}\right|$. Also $z_{1}<z_{2}$ if only (iii) satisfy. Further,

$$
\begin{aligned}
& 0 \leq z_{1} \text { not } \leq z_{2} \text { implies }\left|z_{l}\right|<\left|z_{2}\right|, \\
& z_{1} \leq z_{2}, \quad z_{2}<z_{3} \text { implies } z_{1}<z_{3} .
\end{aligned}
$$

From this definition of complex-valued metric d, Azam et. al. [1] defined the complex-valued metric space (X, d) in the following way:

Definition 1.1. Let X be a nonempty set. Suppose that the mapping $d: X \times X \rightarrow C$ satisfies the following conditions:
(C1) $0 \leq d(x, y)$ for all $x, y \& X$ and $d(x, y)=0$ if and only if $x=y$;
(C2) $d(x, y)=d(y, x)$ for all $x, y \varepsilon X$;
(C3) $d(x, y) \leq d(x, z)+d(z, y)$ for all $x, y, z \varepsilon X$.
Then d is called a complex-valued metric in X, and (X, d) is called a complex-valued metric space.

A point $x \varepsilon X$ is called an interior point of A subseteq X if there exists $r \varepsilon C$, where $0<r$, such that

$$
B(x, r)=\{y \varepsilon X: d(x, y)<r\} \text { subseteq } A .
$$

A point $x \varepsilon X$ is called a limit point of A subseteq X, if for every $0<r \varepsilon C$,

$$
B(x, r) \cap(A X) \neq \varphi .
$$

The set A is called open whenever each element of A is an interior point of A. A subset B is called closed whenever each limit point of B belongs to B.

The family $F:=\{B(x, r): x \varepsilon X, 0<r\}$ is a sub-basis for a Hausdorff topology τ on X. Let $\left\{x_{n}\right\}$ be a sequence in X and $x \varepsilon X$. If for every $c \varepsilon C$ with $0<c$, there exists $n_{0} \varepsilon N$ such that for all $n>n_{0}, d\left(x_{n}, x\right)<$ c, then $\left\{x_{n}\right\}$ is called convergent. Also, sequence $\left\{x_{n}\right\}$ converges to x (written as, $x_{n} \rightarrow x$ or $\lim _{n \rightarrow \infty} x_{n}=x$); and x is the limit point of $\left\{x_{n}\right\}$. The sequence $\left\{x_{n}\right\}$ converges to x if and only if $\lim _{n \rightarrow \infty}\left|d\left(x_{n}, x\right)\right|=0$. If for every $c \varepsilon C$ with $0<c$, there exists $n_{0} \varepsilon N$ such that for all $n>n_{0}$,
$d\left(x_{n}, x_{n+m}\right)<c$, then $\left\{x_{n}\right\}$ is called Cauchy sequence in (X, d). If every Cauchy sequence converges in X, then X is called a complete complex-valued metric space. The sequence $\left\{x_{n}\right\}$ is called Cauchy if and only if $\lim _{n \rightarrow \infty}\left|d\left(x_{n}, x_{n+m}\right)\right|=0$.

Definition 1.2. We define the 'max' function for the partial order relation $\leq b y$:

$$
\begin{aligned}
& \text { (1) } \max \left\{z_{1}, z_{2}\right\}=z_{2} \text { if and only if } z_{1} \leq z_{2} \text {, } \\
& \text { (2) } z_{1} \leq \max \left\{z_{2}, z_{3}\right\} \text { implies } z_{1} \leq z_{2} \text {, or } z_{1} \leq z_{3} \text {. }
\end{aligned}
$$

Using Definition 1.2 we have the following Lemma:

Lemma 1.3. Let $\mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{z}_{3}, \ldots . \varepsilon \mathrm{C}$ and the partial order relation \leq is defined on C . Then
(i) If $z_{1} \leq \max \left\{z_{2}, z_{3}\right\}$ then $z_{1} \leq z_{2}$ if $z_{3} \leq z_{2}$;
(ii) If $z_{1} \leq \max _{\{ }\left\{z_{2}, z_{3}, z_{4\}}\right\}$ then $z_{1} \leq z_{2}$ if $\max _{\{ }\left\{z_{3}, z_{4}\right\} \leq z_{2}$;
(iii) If $z_{1} \leq \max \left\{z_{2}, z_{3}, z_{4}, z_{5}\right\}$ then $z_{1} \leq z_{2}$ if $\max \left\{z_{3}, z_{4}, z_{5}\right\} \leq z_{2}$, and so on.

Since (X, d) is a complex-valued metric space, the 'usual metric' in R is not definable; as shown in Example 7 [1]. Keeping this in view, we need to generalize the Banach contraction principal [2] in complex-valued metric space, as follows:

Theorem 1.4. Let (X, d) be a complete, complex-valued metric space and T be a mapping of X into itself, satisfying:

$$
\begin{equation*}
d(T x, T y) \leq k d(x, y), \text { for all } x, y \in X ; \tag{1.1}
\end{equation*}
$$

where k is a constant in (0,1). Then T has a unique common fixed point in X.

Proof. For an arbitrary x_{0} in X, we have $T^{n} x_{0}=x_{n}$. The sequence $\left\{x_{n}\right\}$ is Cauchy. For, we have since

$$
\begin{align*}
& d\left(x_{1}, x_{2}\right)=d\left(T x_{0}, T x_{1}\right) \leq k d\left(x_{0}, x_{1}\right), \\
& d\left(x_{2}, x_{3}\right)=d\left(T x_{1}, T x_{2}\right) \leq k d\left(x_{1}, x_{2}\right) \leq k^{2} d\left(x_{0}, x_{1}\right), \\
& d\left(x_{n}, x_{n+1}\right)=d\left(T x_{n-1}, T x_{n}\right) \leq k d\left(x_{n-1}, x_{n}\right) \leq k^{n} d\left(x_{0}, x_{1}\right) \tag{A}
\end{align*}
$$

Hence for any $m>n, \quad m, n \varepsilon N$

$$
\begin{aligned}
d\left(x_{n}, x_{n+m}\right) & \leq d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+l}, x_{n+2}\right)+\ldots \ldots . .+d\left(x_{n+m-1}, x_{n+m}\right) \\
& \leq k^{n} d\left(x_{0}, x_{l}\right)+k^{n+1} d\left(x_{0}, x_{l}\right)+\ldots \ldots+k^{n+m-1} d\left(x_{0}, x_{l}\right)
\end{aligned}
$$

$$
\leq k^{n} . d\left(x_{0}, x_{1}\right) /(1-k) \leq d\left(x_{0}, x_{1}\right), \quad \text { as } 0<k<1 .
$$

Therefore $\left|d\left(x_{n}, x_{n+m}\right)\right| \leq\left\{k^{n} /(1-k)\right\} .\left|d\left(x_{0}, x_{1}\right)\right| \rightarrow 0$; as $m, n \rightarrow \infty$. Thus $\left\{x_{n}\right\}$ is a Cauchy sequence. The completeness of X implies that sequence $\left\{x_{n}\right\}$ converges to some $x \varepsilon X$. We claim that $x=T x$, otherwise $|d(x, T x)|=|z|>0$, and we would then have

$$
\begin{aligned}
|d(x, T x)|=|z| \leq & \left|d\left(x, x_{n}\right)+d\left(x_{n}, T x\right)\right|=\left|d\left(x, x_{n}\right)+d\left(T x_{n-1}, T x\right)\right| \\
& \leq\left|d\left(x, x_{n}\right)\right|+\left|d\left(T x_{n-1}, T x\right)\right|=\left|d\left(x, x_{n}\right)\right|+k\left|d\left(x_{n-1}, x\right)\right| \rightarrow 0 \text { as } n \rightarrow \infty .
\end{aligned}
$$

Thus $x=T x$. The uniqueness of x follows easily. For, if x ' be another fixed point then

$$
d\left(x, x^{\prime}\right) \leq d(x, T x)+d\left(T x, x^{\prime}\right)=d\left(T x, T x^{\prime}\right) \leq k \cdot d\left(x, x^{\prime}\right), \quad \text { by }(1.1) .
$$

Taking modulus in above, we have

$$
\left|d\left(x, x^{\prime}\right)\right| \leq k\left|d\left(x, x^{\prime}\right)\right|<\left|d\left(x, x^{\prime}\right)\right|,
$$

a contradiction. Thus x is unique fixed point in X. This completes the proof.

2. Main Results

Theorem 2.1. Let (X, d) be a complete complex-valued metric space and mappings $S, T: X \rightarrow X$ satisfying:
$d(S x, T y) \leq h \max \{d(x, y), d(x, S x), d(y, T y), d(x, T y), d(y, S x)\}$
for all $x, y \in X$; where $0<h<1 / 2$. Then S and T have a unique common fixed point in X.

Proof. Choose an arbitrary point x_{0} in X. Sequence $\left\{x_{n}\right\}$ can be formed in X such that $S x_{0}=x_{1}, T x_{1}=x_{2}$, $S x_{2}=x_{3}, T x_{3}=x_{4}, \ldots$.

$$
\begin{equation*}
S x_{2 n}=x_{2 n+1}, T x_{2 n+1}=x_{2 n+2} . \tag{2.2}
\end{equation*}
$$

We show that the sequence $\left\{x_{n}\right\}$ is Cauchy. For, putting $x=x_{2 k}$ and $y=x_{2 k+1}$ in (2.1), we have

$$
\begin{align*}
d\left(x_{2 k+1}, x_{2 k+2}\right) & =d\left(S x_{2 k}, T x_{2 k+1}\right) \\
& \leq h \max \left\{d\left(x_{2 k}, x_{2 k+1}\right), d\left(x_{2 k}, S x_{2 k}\right), d\left(x_{2 k+1}, T x_{2 k+1}\right), d\left(x_{2 k}, T x_{2 k+1}\right), d\left(x_{2 k+1}, S x_{2 k}\right)\right\} \\
& =h \max \left\{d\left(x_{2 k}, x_{2 k+1}\right), d\left(x_{2 k}, x_{2 k+1}\right), d\left(x_{2 k+1}, x_{2 k+2}\right), d\left(x_{2 k}, x_{2 k+2}\right), 0\right\}, \text { by (2,2)} \tag{B}\\
& \leq h \max \left\{d\left(x_{2 k}, x_{2 k+1}\right), d\left(x_{2 k}, x_{2 k+1}\right), d\left(x_{2 k+1}, x_{2 k+2}\right), d\left(x_{2 k}, x_{2 k+1}\right)+d\left(x_{2 k+1}, x_{2 k+2}\right), 0\right\}
\end{align*}
$$

whence,
$d\left(x_{2 k+1}, x_{2 k+2}\right) \leq h\left[d\left(x_{2 k}, x_{2 k+1}\right)+d\left(x_{2 k+1}, x_{2 k+2}\right)\right]$, as other co-ordinates are less
i.e., $\quad d\left(x_{2 k+1}, x_{2 k+2}\right) \leq[h /(1-h)] . d\left(x_{2 k}, x_{2 k+1}\right)$.

Similarly, by putting $x=x_{2 k+2}$ and $y=x_{2 k+1}$ in (2.1), we have

$$
d\left(x_{2 k+2}, x_{2 k+3}\right) \leq[h /(1-h)] \cdot d\left(x_{2 k+1}, x_{2 k+2}\right) .
$$

Hence for each $n=1,2,3, \ldots$ we have

$$
\begin{equation*}
d\left(x_{n}, x_{n+1}\right) \leq H \cdot d\left(x_{n-1}, x_{n}\right), \tag{C}
\end{equation*}
$$

where $0<H=h /(1-h)<1$. From this we have, inductively

$$
\begin{equation*}
d\left(x_{n}, x_{n+1}\right) \leq H . d\left(x_{n-1}, x_{n}\right) \leq H^{2} . d\left(x_{n-2}, x_{n-1}\right) \leq \ldots . . . \leq H^{n} . d\left(x_{0}, x_{1}\right) \tag{2.3}
\end{equation*}
$$

Thus for any $m>n, m, n \varepsilon N$, we have

$$
\begin{aligned}
d\left(x_{n}, x_{m}\right) & \leq d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, x_{n+2}\right)+d\left(x_{n+2}, x_{n+3}\right)+\ldots . .+d\left(x_{m-1}, x_{m}\right), \\
& \leq\left[H^{n}+H^{n+1}+H^{n+2}+\ldots \ldots+H^{m-1}\right] \cdot d\left(x_{0}, x_{1}\right), \quad \text { by }(2.3) \\
& \leq\left[H^{n} /(1-H)\right] \cdot d\left(x_{0}, x_{1}\right),
\end{aligned}
$$

So that $\left|d\left(x_{n}, x_{m}\right)\right| \leq\left|\left\{H^{n} /(1-H)\right\} \cdot d\left(x_{0}, x_{l}\right)\right| \rightarrow 0$ as $n \rightarrow \infty$.

Thus $\left\{x_{n}\right\}$ is a Cauchy sequence in X. Since X is complete, therefore $\left\{x_{n}\right\}$ converges to some point u (say) in X. We claim that u is a fixed point of S. Otherwise $u \neq S u$ and $|d(u, S u)|=|z|>0$. From triangle inequality and using (2.1), we have successively

$$
\begin{aligned}
d(u, S u) & \leq d\left(u, x_{2 k+2}\right)+d\left(x_{2 k+2}, S u\right) \\
& \leq d\left(u, x_{2 k+2}\right)+d\left(T x_{2 k+1}, S u\right) \\
& \leq d\left(u, x_{2 k+2}\right)+h \operatorname{maxax}_{\{ }\left\{d\left(u, x_{2 k+1}\right), d(u, S u), d\left(x_{2 k+1}, T x_{2 k+1}\right), d\left(u, T x_{2 k+1}\right), d\left(x_{2 k+1}, S u\right)\right\} .
\end{aligned}
$$

Taking magnitude in above, and using $|a+b| \leq|a|+|b|$, for all $\mathrm{a}, \mathrm{b} \varepsilon \mathrm{C}$, we have

$$
\begin{array}{r}
|d(u, S u)| \leq d\left(u, x_{2 k+2}\right)+h \max _{\imath}\left\{\left|d\left(u, x_{2 k+1}\right)\right|,|d(u, S u)|,\left|d\left(x_{2 k+1}, T x_{2 k+1}\right)\right|,\right. \\
\left.\left|d\left(u, T x_{2 k+1}\right)\right|, \mid d\left(x_{2 k+1}, S u\right)\right\} \mid .
\end{array}
$$

Letting $n \rightarrow \infty$ we have

$$
|z|=|d(u, S u)| \leq 0+h \max \{0,|z|, 0,0,|z|\}=h .|z|<|z|,
$$

a contradiction. Thus $|z|=|d(u, S u)|=0$, yielding $u=S u$.

Further, since X is complete, there exist some v in X such that $v=T u$. We claim that $u=v$. If not, then from (2.1), we have

$$
\begin{aligned}
d(u, v)=d(S u, T u) \leq & h \max \{d(u, u), d(u, S u), d(u, T u), d(u, T u), d(u, S u)\} \\
& \leq h \max _{\{ }\{0,0, d(u, v), d(u, v), 0\}=h d(u, v) .
\end{aligned}
$$

Whence, on taking magnitude, $|d(u, v)| \leq|h \cdot d(u, v)|<|d(u, v)|$, a contradiction.

Thus $u=v=T u=S u$, and u is the common fixed point of S and T. For uniqueness of common fixed point, let u_{0} be another common fixed point of S and T. Then from (2.1), we have

$$
d\left(u, u_{0}\right)=d\left(S u, T u_{0}\right) \leq h \max \left\{d\left(u, u_{0}\right), d(u, S u), d\left(u_{0}, T u_{0}\right), d\left(u, T u_{0}\right), d\left(u_{0}, S u\right)\right\}
$$

whence,

$$
\left|d\left(u, u_{0}\right)\right| \leq h \max \left\{\left|d\left(u, u_{0}\right)\right|, 0,0,\left|d\left(u, u_{0}\right)\right|,\left|d\left(u_{0}, u\right)\right|\right\}=h\left|d\left(u, u_{0}\right)\right|<\left|d\left(u, u_{0}\right)\right|,
$$

a contradiction. Thus S and T have unique common fixed point. This completes the proof.

If the function 'max' has only three variables, as shown in (2.4) below, then we have the following theorem:

Corollary 2.2. Let (X, d) be a complete complex-valued metric space and mappings $S, T: X \rightarrow X$ satisfying:

$$
\begin{equation*}
d(S x, T y) \leq h \max \{d(x, y), d(x, S x), d(y, T y)\} \tag{2.4}
\end{equation*}
$$

for all $x, y \varepsilon X$; where $0<h<1$. Then S and T have a unique common fixed point in X.

Proof. In this case, eq.(B) reduces to:

$$
d\left(x_{2 k+1}, x_{2 k+2}\right) \leq h \max \left\{d\left(x_{2 k}, x_{2 k+1}\right), d\left(x_{2 k}, x_{2 k+1}\right), d\left(x_{2 k+1}, x_{2 k+2}\right)\right\}=d\left(x_{2 k} x_{2 k+1}\right)
$$

so, eq.(C) reduces to:

$$
d\left(x_{n}, x_{n+1}\right) \leq h d\left(x_{n-1}, x_{n}\right) \text {, where } 0<h<1 .
$$

This is eq.(A). Further proof runs smoothly as Theorem 1.4 and Theorem 2.1.

Remark. By putting $\mathrm{S}=\mathrm{T}$ in above corollary, we obtain Theorem 1.4. Thus, Corollary 2.2 is a generalization of Theorem 1.4.

References.

[1] A. Azam, B. Fisher and M. Khan, Common fixed point theorems in complex-valued metric spaces, Numerical Functional Analysis and Optimization, 3(3) 243-253 (2011).
[2] S. Banach, S"ur les operations dans les ensembles abstraits et. leur application aux equations integrales, Fund. Math. 3, 133-181 (1922).

