Online: ISSN 2008-949x

Journal of Mathematics and Computer Science

Journal Homepage: www.tjmcs.com - www.isr-publications.com/jmcs

Fixed point results for multivalued mappings on a sequence in a closed ball with applications

Abdullah Shoaib^{a,*}, Akbar Azam^b, Muhammad Arshad^c, Eskandar Ameer^{c,d}

^aDepartment of Mathematics and Statistics, Riphah International University, Islamabad - 44000, Pakistan.

^bDepartment of Mathematics, COMSATS Institute of Information Technology, Chack Shahzad, Islamabad - 44000, Pakistan.

^cDepartment of Mathematics, International Islamic University, H-10, Islamabad - 44000, Pakistan.

^dDepartment of Mathematics, Taiz University, Taiz, Yemen.

Abstract

In this paper, we establish fixed point results for semi α_* -admissible multivalued mappings satisfying a contractive condition of Reich type only for the elements in a sequence contained in closed ball in a complete dislocated metric space. As an application, we derive some new fixed point theorems for ordered metric space and metric space endowed with a graph. An example has been constructed to demonstrate the novelty of our results. Our results unify, extend, and generalize several comparable results in the existing literature. ©2017 All rights reserved.

Keywords: Fixed point, complete dislocated metric space, closed ball, semi α_* -admissible. 2010 MSC: 46S40, 47H10, 54H25.

1. Introduction and preliminaries

Let $S : X \longrightarrow X$ be a mapping. A point $x \in X$ is called a fixed point of S if x = Sx. Many results appeared in literature related to the fixed point of mappings which are contractive on the whole domain. It is possible that $S : X \longrightarrow X$ is not a contraction but $S : Y \longrightarrow X$ is a contraction, where Y is a closed ball in X. One can obtain fixed point results for such mapping by using suitable conditions. Recently, Hussain et al. [14] proved a result concerning the existence of fixed points of a mapping satisfying a contractive condition on closed ball (see also [3–6, 28–30]).

The notion of dislocated topologies have useful applications in the context of logic programming semantics (see [12]). Dislocated metric space (metric-like space) (see [2, 17, 25]) is a generalization of partial metric space (see [19, 26]). Karapınar et al. [17] noticed that the notions metric-like space [2] and dislocated metric space [12] are exactly the same. They also discussed the existence and uniqueness of a fixed point of a cyclic mapping in the context of metric-like spaces. Arshad et al. [5, 21, 22] noticed that the closed ball, Cauchy sequence, and completeness defined on these spaces are different from each other.

*Corresponding author

Email addresses: abdullahshoaib15@yahoo.com (Abdullah Shoaib), akbarazam@yahoo.com (Akbar Azam), marshadzia@iiu.edu.pk (Muhammad Arshad), eskandarameer@yahoo.com (Eskandar Ameer)

doi:10.22436/jmcs.017.02.13

They remarked that it is better to find a fixed point in a closed ball in dislocated metric space. They also gave an example of a space which was complete dislocated metric space but was not complete metric-like space.

Nadler [20], introduced a study of fixed point theorems involving multivalued mappings (see also [8, 9]). The existence of fixed points of α -admissible mappings in complete metric spaces has been studied by several researchers (see [18, 23, 27]). Asl et al. [7] generalized these notions by introducing the concepts of α_* - ψ contractive multifunctions, α_* -admissible mapping and obtained some fixed point results for these multifunctions (see also [1, 13, 15]). On the other hand, [24] established some results concerning contraction mappings. In this paper we discuss some new fixed point results for Reich type multivalued mappings in a closed ball in complete dislocated metric space.

The following definitions and results will be needed in the sequel.

Definition 1.1 ([5, 17]). Let X be a nonempty set and let $d_1 : X \times X \rightarrow [0, \infty)$ be a function, called a dislocated metric (or simply d_1 -metric), if for any $x, y, z \in X$, the following conditions hold:

- (i) if $d_1(x, y) = 0$, then x = y;
- (ii) $d_1(x,y) = d_1(y,x);$
- (iii) $d_1(x,y) \leq d_1(x,z) + d_1(z,y)$.

The pair (X, d_1) is called a dislocated metric space.

It is clear that if $d_1(x, y) = 0$, then from (i), x = y. But if x = y, $d_1(x, y)$ may not be 0. For $x \in X$ and $\varepsilon > 0$, $\overline{B(x, \varepsilon)} = \{y \in X : d_1(x, y) \le \varepsilon\}$ is a closed ball in (X, d_1) .

Example 1.2 ([5]). If $X = R^+ \cup \{0\}$, then $d_1(x, y) = x + y$ defines a dislocated metric d_1 on X.

Definition 1.3 ([5]). Let (X, d_1) be a dislocated metric space.

- (i) A sequence $\{x_n\}$ in (X, d_1) is called Cauchy sequence if given $\varepsilon > 0$, there corresponds $n_0 \in N$ such that for all $n, m \ge n_0$ we have $d_1(x_m, x_n) < \varepsilon$ or $\lim_{n,m \to \infty} d_1(x_n, x_m) = 0$.
- (ii) A sequence $\{x_n\}$ dislocated-converges (for short d_1 -converges) to x if $\lim_{n \to \infty} d_1(x_n, x) = 0$. In this case x is called a d_1 -limit of $\{x_n\}$.
- (iii) (X, d_1) is called complete if every Cauchy sequence in X converges to a point $x \in X$ such that $d_1(x, x) = 0$.

Definition 1.4. Let K be a nonempty subset of dislocated metric space X and let $x \in X$. An element $y_0 \in K$ is called a best approximation in K if

$$d_1(x, K) = d_1(x, y_0)$$
, where $d_1(x, K) = \inf_{y \in K} d_1(x, y)$.

If each $x \in X$ has at least one best approximation in K, then K is called a proximinal set.

We denote CP(X) be the set of all closed proximinal subsets of X. Let Ψ denote the family of all nondecreasing functions $\psi : [0, +\infty) \to [0, +\infty)$ such that $\sum_{n=1}^{+\infty} \psi^n(t) < +\infty$ for all t > 0, where ψ^n is the nth iterate of ψ . If $\psi \in \Psi$, then $\psi(t) < t$ for all t > 0.

Definition 1.5. Let $S : X \to P(X)$ be a multivalued mapping and $\alpha : X \times X \to [0, +\infty)$. Let $A \subseteq X$, we say that S is semi α_* -admissible on A, whenever $\alpha(x, y) \ge 1$ implies that $\alpha_*(Sx, Sy) \ge 1$ for all $x, y \in A$, where $\alpha_*(Sx, Sy) = \inf\{\alpha(a, b) : a \in Sx, b \in Sy\}$. If A = X, then we say that S is α_* -admissible on X.

Definition 1.6. The function H_{d_1} : $P(X) \times P(X) \rightarrow X$, defined by

$$H_{d_{l}}(A,B) = \max\{\sup_{a \in A} d_{l}(a,B), \sup_{b \in B} d_{l}(A,b)\}$$

is called dislocated Hausdorff-Pompeiu metric on P(X). Also, $(P(X), H_{d_q})$ is known as dislocated quasi Hausdorff-Pompeiu metric space.

Lemma 1.7. Let (X, d_l) be a dislocated metric space. Let $(P(X), H_{d_l})$ is a dislocated Hausdorff-Pompeiu metric space on P(X). Then for all $A, B \in CP(X)$ and for each $a \in A$ there exists $b_a \in B$ satisfying $d_l(a, B) = d_l(a, b_a)$, then $H_{d_l}(A, B) \ge d_l(a, b_a)$.

Proof. If $H_{d_1}(A, B) = \sup_{a \in A} d_1(a, B)$, then $H_{d_1}(A, B) \ge d_1(a, B)$ for each $a \in A$. As B is a proximinal set, so for each $a \in X$, there exists at least one best approximation $b_a \in B$ that satisfies $d_1(a, B) = d_1(a, b_a)$. Now we have, $H_{d_1}(A, B) \ge d_1(a, b_a)$. Now $H_{d_1}(A, B) = \sup_{b \in B} d_1(A, b) \ge \sup_{a \in A} d_1(a, B)$, hence, the lemma is proved.

2. Main result

Let (X, d_1) be a dislocated metric space, $x_0 \in X$ and $S : X \to P(X)$ be a multivalued mapping on X. Then there exists $x_1 \in Sx_0$ such that $d_1(x_0, Sx_0) = d_1(x_0, x_1)$. Let $x_2 \in Sx_1$ be such that $d_1(x_1, Sx_1) = d_1(x_1, x_2)$. Continuing this process, we construct a sequence x_n of points in X such that $x_{n+1} \in Sx_n$ and $d_1(x_n, Sx_n) = d_1(x_n, x_{n+1})$. We denote this iterative sequence $\{XS(x_n)\}$ and say that $\{XS(x_n)\}$ is a sequence in X generated by x_0 .

Theorem 2.1. Let (X, d_1) be a complete dislocated metric space, r > 0, $x_0 \in B_{d_1}(x_0, r) \ \alpha : X \times X \longrightarrow [0, +\infty)$, $S : X \to P(X)$ be a semi α_* -admissible multifunction on $\overline{B_{d_1}(x_0, r)}$ and $\{XS(x_n)\}$ be a sequence in X generated by $x_0, \alpha(x_0, x_1) \ge 1$. Suppose that there exist $\alpha, b \in [0, 1)$ with $\alpha + 2b < 1$ such that

$$\alpha_*(Sx, Sy)H_{d_1}(Sx, Sy) \leqslant ad_1(x, y) + b\left[d_1(x, Sx) + d_1(y, Sy)\right]$$

$$(2.1)$$

for all $x,y\in\overline{B_{d_{l}}(x_{0},r)}\cap\{XS(x_{n})\}$, and

$$d_{l}(x_{0}, Sx_{0}) \leq (1-\lambda) r, \text{ where } \lambda = \frac{a+b}{1-b}.$$
(2.2)

 $\begin{array}{l} \textit{Then } \{XS(x_n)\}\textit{ is a sequence in } \overline{B_{d_1}(x_0,r)}\textit{ and } \{XS(x_n)\} \rightarrow x^* \in \overline{B_{d_1}(x_0,r)}\textit{ and } \alpha(x_n,x_{n+1}) \geqslant 1\textit{ for } x_n,x_{n+1} \in \{XS(x_n)\}\textit{, } n \in \mathbb{N} \cup \{0\}\textit{. Also, if } \alpha(x_n,x^*) \geqslant 1\textit{ or } \alpha(x^*,x_n) \geqslant 1\textit{ for all } n \in \mathbb{N} \cup \{0\}\textit{ and inequality (2.1) holds for all } x,y \in \left(\overline{B_{d_1}(x_0,r)} \cap \{XS(x_n)\}\right) \cup \{x^*\}\textit{, then } S\textit{ has a fixed point in } \overline{B_{d_1}(x_0,r)}.\end{array}$

Proof. As $x_0 \in \overline{B_{d_1}(x_0, r)}$, and $S : X \to P(X)$ is a multivalued mapping on X, then there exists $x_1 \in Sx_0$ such that $d_1(x_0, Sx_0) = d_1(x_0, x_1)$. If $x_0 = x_1$, then x_0 is a fixed point in $\overline{B_{d_1}(x_0, r)}$ of S. Let $x_0 \neq x_1$. From (2.2), we get,

$$d_1(x_0, x_1) \leq (1-\lambda) r < r.$$

It follows that $x_1 \in B_{d_1}(x_0, r)$. As $\alpha(x_0, x_1) \ge 1$ and S is semi α_* -admissible multifunction on $B_{d_1}(x_0, r)$, so $\alpha_*(Sx_0, Sx_1) \ge 1$. As $\alpha_*(Sx_0, Sx_1) \ge 1$, $x_1 \in Sx_0$ and $x_2 \in Sx_1$, so $\alpha(x_1, x_2) \ge 1$. As S is semi α_* -admissible multifunction on $\overline{B_{d_1}(x_0, r)}$, thus, we have $\alpha_*(Sx_1, Sx_2) \ge 1$. As $\alpha_*(Sx_1, Sx_2) \ge 1$, we have $\alpha(x_2, x_3) \ge 1$, which further implies $\alpha_*(Sx_2, Sx_3) \ge 1$. Continuing this process, we have $\alpha_*(Sx_{j-1}, Sx_j) \ge 1$. Now,

$$\begin{split} d_{l}(x_{j}, x_{j+1}) &\leqslant H_{d_{l}}(Sx_{j-1}, Sx_{j}) \leqslant \alpha_{*}(Sx_{j-1}, Sx_{j}) H_{d_{l}}(Sx_{j-1}, Sx_{j}) \\ &\leqslant ad_{l}(x_{j-1}, x_{j}) + b\left[d_{l}(x_{j-1}, Sx_{j-1}) + d_{l}(x_{j}, Sx_{j})\right] \\ &= ad_{l}(x_{j-1}, x_{j}) + bd_{l}(x_{j-1}, x_{j}) + bd_{l}(x_{j}, x_{j+1}) \\ &\leqslant (a+b) d_{l}(x_{j-1}, x_{j}) + bd_{l}(x_{j}, x_{j+1}) \\ &\leqslant \frac{a+b}{1-b} d_{l}(x_{j-1}, x_{j}) = \lambda d_{l}(x_{j-1}, x_{j}) \leqslant \dots \leqslant \lambda^{j} d_{l}(x_{0}, x_{1}), \end{split}$$

which implies,

$$d_{\mathfrak{l}}(x_{\mathfrak{j}}, x_{\mathfrak{j}+1}) \leqslant \lambda^{\mathfrak{j}} d_{\mathfrak{l}}(x_{0}, x_{1}).$$

$$(2.3)$$

Now,

$$\begin{split} d_{l}(x_{0},x_{j+1}) &\leqslant d_{l}(x_{0},x_{1}) + \dots + d_{l}(x_{j},x_{j+1}) \\ &\leqslant d_{l}(x_{0},x_{1}) + \dots + \lambda^{j} d_{l}(x_{0},x_{1}) \\ &= \left(1 + \lambda + \dots + \lambda^{j}\right) d_{l}(x_{0},x_{1}) \\ &\leqslant \left(1 - \lambda\right) \left(1 + \lambda + \dots + \lambda^{j}\right) r < r. \end{split}$$

Thus $x_{j+1} \in \overline{B_{d_1}(x_0, r)}$. Hence by induction, $x_n \in \overline{B_{d_1}(x_0, r)}$ and $\alpha(x_n, x_{n+1}) \ge 1$ for all $n \in \mathbb{N}$. As S is semi α_* -admissible multifunction on $\overline{B_{d_1}(x_0, r)}$, therefore $\alpha_*(Sx_n, Sx_{n+1}) \ge 1$ for all $n \in \mathbb{N} \cup \{0\}$. Now inequality (2.3) can be written as

$$d_{l}(x_{n}, x_{n+1}) \leqslant \lambda^{n} d_{l}(x_{0}, x_{1}) \text{ for all } n \in \mathbb{N}.$$

$$(2.4)$$

Now,

$$d_{\mathfrak{l}}(x_{n}, x_{n+\mathfrak{i}}) \leq d_{\mathfrak{l}}(x_{n}, x_{n+1}) + \ldots + d_{\mathfrak{l}}(x_{n+\mathfrak{i}-1}, x_{n+\mathfrak{i}}) \leq \frac{\lambda^{\mathfrak{n}}(1-\lambda^{\mathfrak{i}})}{1-\lambda} d_{\mathfrak{l}}(x_{0}, x_{1}) \longrightarrow 0 \text{ as } \mathfrak{n} \to \infty.$$

Thus, we proved that $\{x_n\}$ is a Cauchy sequence in $(B_{d_1}(x_0, r), d_1)$. As every closed ball in a complete dislocated metric space is complete, so there exists $x^* \in \overline{B_{d_1}(x_0, r)}$ such that $x_n \to x^*$, and

$$\lim_{n \to \infty} d_1(x_n, x^*) = 0.$$
(2.5)

Hence $\{XS(x_n)\}$ is a sequence in $\overline{B_{d_1}(x_0, r)}$ generated by x_0 and $\{XS(x_n)\} \rightarrow x^* \in \overline{B_{d_1}(x_0, r)}$ and $\alpha(x_n, x_{n+1}) \ge 1$ for $x_n, x_{n+1} \in \{XS(x_n)\}$, $n \in \mathbb{N} \cup \{0\}$. As $\alpha_*(Sx_n, Sx_{n+1}) \ge 1$ for all $n \in \mathbb{N} \cup \{0\}$, we have $\alpha(x_{n+1}, x_{n+2}) \ge 1$ for all $n \in \mathbb{N} \cup \{0\}$. By assumption, we have $\alpha(x_n, x^*) \ge 1$ for all $n \in \mathbb{N} \cup \{0\}$. Thus $\alpha_*(Sx_n, Sx^*) \ge 1$. Now,

$$\begin{split} d_{l}(x^{*},Sx^{*}) &\leq d_{l}(x^{*},x_{n+1}) + d_{l}(x_{n+1},Sx^{*}) \\ &\leq d_{l}(x^{*},x_{n+1}) + H_{d_{l}}(Sx_{n},Sx^{*}) \\ &\leq d_{l}(x^{*},x_{n+1}) + \alpha_{*}(Sx_{n},Sx^{*})H_{d_{l}}(Sx_{n},Sx^{*}) \\ &\leq d_{l}(x^{*},x_{n+1}) + ad_{l}(x_{n},x^{*}) + b\left[d_{l}(x_{n},Sx_{n}) + d_{l}(x^{*},Sx^{*})\right]. \end{split}$$

Letting $n \to \infty$ in the previous inequality, by using inequality (2.4) and (2.5), we get

$$(1-b) d_{l}(x^*, Sx^*) \leqslant 0.$$

Similarly, if $\alpha(x^*, x_n) \ge 1$ for all $n \in \mathbb{N} \cup \{0\}$, thus $\alpha_*(Sx^*, Sx_n) \ge 1$. Now,

$$(1-b) d_{\mathfrak{l}}(Sx^*, x^*) \leq 0.$$

We obtain, $d_1(Sx^*, x^*) = 0$. Hence $x^* \in Sx^*$. So S has a fixed point in $B_{d_1}(x_0, r)$.

Let X be a nonempty set. Then (X, \leq, d_1) is called a preordered dislocated metric space if d_1 is a dislocated metric on X and is a preorder on X. Let (X, \leq, d_1) be a preordered metric space and $A, B \subseteq X$. We say that $A \leq B$ whenever for each $a \in A$ there exists such that $a \leq b$. Also, we say that $A \leq_r B$ whenever for each $a \in A$ and $b \in B$, we have $a \leq b$.

Corollary 2.2. Let (X, \leq, d_1) be a preordered complete dislocated metric space, r > 0, $x_0 \in B_{d_1}(x_0, r)$, $S : X \to P(X)$ and $\{XS(x_n)\}$ be a sequence in X generated by x_0 with $x_0 \leq x_1$. Suppose there exist $a, b \in [0, 1)$ with a + 2b < 1 such that

$$H_{d_{l}}(Sx, Sy) \leq ad_{l}(x, y) + b[d_{l}(x, Sx) + d_{l}(y, Sy)]$$

$$(2.6)$$

for all x, y in $\overline{B_{d_1}(x_0, r)} \cap \{XS(x_n)\}$ with $x \leq y$, and

$$d_1(x_0, Sx_0) \leq (1-\lambda) r$$
, where $\lambda = \frac{a+b}{1-b}$.

If $x \leq y$ implies $Sx \leq_r Sy$ for all $x, y \in \overline{B_{d_1}(x_0, r)} \cap \{XS(x_n)\}$, then $\{XS(x_n)\}$ is a sequence in $\overline{B_{d_1}(x_0, r)}$, $x_n \leq x_{n+1}$ and $\{XS(x_n)\} \rightarrow x^* \in \overline{B_{d_1}(x_0, r)}$. Also if $x^* \leq x_n$ or $x_n \leq x^*$ for all $n \in \mathbb{N} \cup \{0\}$ and inequality (2.6) holds for all $x, y \in (\overline{B_{d_1}(x_0, r)} \cap \{XS(x_n)\}) \cup \{x^*\}$, then x^* is a fixed point of S in $\overline{B_{d_1}(x_0, r)}$.

Let $f : X \longrightarrow X$ be a self-mapping of a set X and $\alpha : X \times X \rightarrow [0, +\infty)$ be a mapping, then the mapping f is called semi α -admissible if, $A \subseteq X$, $x, y \in A$, $\alpha(x, y) \ge 1$ implies $\alpha(fx, fy) \ge 1$. If A = X, then the mapping f is called α -admissible.

Corollary 2.3. Let (X, d_1) be a complete dislocated metric space and $S : X \to X$, r > 0 and x_0 be an arbitrary point in $\overline{B}_{d_1}(x_0, r)$ and $\{x_n\}$ be a Picard sequence in X with initial guess x_0 . Let $\alpha : X \times X \to [0, +\infty)$ be a semi α -admissible mapping on $\overline{B}_{d_1}(x_0, r)$ with $\alpha(x_0, x_1) \ge 1$. For $\alpha, b \in [0, 1)$ with $\alpha + 2b < 1$, assume that,

$$x, y \in B_{d_{l}}(x_{0}, r), \ \alpha(x, y) \ge 1, \ implies \ d_{l}(Sx, Sy) \le ad_{l}(x, y) + b \left[d_{l}(x, Sx) + d_{l}(y, Sy)\right], \tag{2.7}$$

and

$$d_1(x_0,Sx_0) \leqslant (1-\lambda)\,r$$
 , where $\lambda = \frac{a+b}{1-b}$

 $\begin{array}{l} \textit{Then } \{x_n\} \textit{ is a sequence in } \overline{B_{d_1}(x_0,r)} \textit{ and } x_n \rightarrow x^* \in \overline{B_{d_1}(x_0,r)} \textit{ and } \alpha(x_n,x_{n+1}) \geqslant 1 \textit{ for all } n \in \mathbb{N} \cup \{0\}. \textit{ Also, if } \\ \alpha(x_n,x^*) \geqslant 1 \textit{ for all } n \in \mathbb{N} \cup \{0\}, \textit{ and inequality } (2.7) \textit{ holds for all } x,y \in \left(\overline{B_{d_1}(x_0,r)} \cap \{XS(x_n)\}\right) \cup \{x^*\}, \textit{ then } x^* \textit{ is a fixed point of } S \textit{ in } \overline{B_{d_1}(x_0,r)}.\end{array}$

Recall that if (X, \preceq) is a preordered set and $T : X \to X$ is such that for $x, y \in X$, with $x \preceq y$ implies $Tx \preceq Ty$, then the mapping T is said to be non-decreasing.

Corollary 2.4. Let (X, d_1) be a complete dislocated metric space, $S : X \to X$ be nondecreasing mapping, r > 0 and x_0 be an arbitrary point in $\overline{B_{d_1}(x_0, r)}$, $\{x_n\}$ be a Picard sequence in X with initial guess x_0 and $x_0 \preceq x_1$. For $a, b \in [0, 1)$ with a + 2b < 1 such that

$$d_{d_1}(Sx, Sy) \leq ad_1(x, y) + b \left[d_1(x, Sx) + d_1(y, Sy) \right]$$

$$(2.8)$$

for all x, y in $\overline{B_{d_1}(x_0, r)} \cap \{XS(x_n)\}$ with $x \leq y$, and

$$d_1(x_0,Sx_0) \leqslant (1-\lambda) \, r \text{, where } \lambda = \frac{a+b}{1-b}$$

Then $\{x_n\}$ is a sequence in $\overline{B}_{d_1}(x_0, r)$, $x_n \leq x_{n+1}$ and $\{x_n\} \rightarrow x^* \in \overline{B}_{d_1}(x_0, r)$. Also if $x^* \leq x_n$ or $x_n \leq x^*$ for all $n \in \mathbb{N} \cup \{0\}$ and inequality (2.8) holds for all $x, y \in \left(\overline{B}_{d_1}(x_0, r) \cap \{XS(x_n)\}\right) \cup \{x^*\}$, then x^* is a fixed point of S in $\overline{B}_{d_1}(x_0, r)$.

Example 2.5. Let $X = R^+ \cup \{0\}$ and let $d_1 : X \times X \to X$ be the complete dislocated metric on X defined by,

$$d_1(x, y) = x + y$$
 for all $x, y \in X$.

Define the multivalued mapping $S : X \to P(X)$ by

$$Sx = \begin{cases} [\frac{2}{3}x, \frac{1}{2}], & \text{if } x \in [0, 1), \\ [x, x+2], & \text{if } x \in (1, \infty). \end{cases}$$

Consider $x_0 = 1$, r = 21, $a = \frac{1}{2}$, $b = \frac{1}{5}$, then $\lambda = \frac{7}{8}$, $\overline{B_{d_1}(x_0, r)} = [0, 20]$ and $(1 - \lambda) r = \frac{5}{2} > d_1(x_0, Sx_0) = \frac{5}{3}$. So we obtain a sequence $\{XS(x_n)\} = \{1, \frac{2}{3}, \frac{4}{9}, \frac{8}{27}, \ldots\}$ in X generated by x_0 . Define the mapping,

$$\alpha(x,y) = \begin{cases} 1, & \text{if } x, y \in [0,1] \\ \frac{3}{2}, & \text{otherwise.} \end{cases}$$

Now,

$$\alpha_*(S4, S6)\mathsf{H}_{d_1}(S4, S6) = (\frac{3}{2})12 > \frac{1}{2}\mathsf{d}_1(4, 6) + \frac{1}{5}\left[\mathsf{d}_1(4, S4) + \mathsf{d}_1(6, S6)\right] = 9.$$

So the contractive condition does not hold on X. Clearly, the contractive condition does not hold for all $x, y \in \overline{B_{d_1}(x_0, r)}$. Now for all $x, y \in \overline{B_{d_1}(x_0, r)} \cap \{XS(x_n)\}$, we have

$$\begin{aligned} \alpha_*(Sx, Sy) H_{d_1}(Sx, Sy) &= 1 \left[\max \left\{ \sup_{a \in Sx} d_1(a, Sy), \sup_{b \in Sy} d_1(Sx, b) \right\} \right] \\ &= \max \left\{ \sup_{a \in Sx} d_1(a, \left[\frac{2y}{3}, \frac{3y}{4} \right]), \sup_{b \in Sy} d_1(\left[\frac{2x}{3}, \frac{3x}{4} \right], b) \right\} \\ &= \max \left\{ d_1(\frac{3x}{4}, \left[\frac{2y}{3}, \frac{3y}{4} \right]), d_1(\left[\frac{2x}{3}, \frac{3x}{4} \right], \frac{3y}{4}) \right\} \\ &= \max \left\{ d_1(\frac{3x}{4}, \frac{2y}{3}), d_1(\frac{2x}{3}, \frac{3y}{4}) \right\} \\ &= \max \left\{ \frac{3x}{4} + \frac{2y}{3}, \frac{2x}{3} + \frac{3y}{4} \right\} \\ &\leq \frac{5}{6}x + \frac{5}{6}y = \frac{1}{2}(x + y) + \frac{1}{5} \left[x + \frac{2x}{3} + y + \frac{2y}{3} \right] \\ &= \frac{1}{2}(x + y) + \frac{1}{5} \left[d_1 \left(x, \left[\frac{2x}{3}, \frac{3x}{4} \right] \right) + d_1 \left(y, \left[\frac{2y}{3}, \frac{3y}{4} \right] \right) \right] \\ &= ad_1(x, y) + b \left[d_1(x, Sx) + d_1(y, Sy) \right]. \end{aligned}$$

So the contractive condition holds on $\overline{B_{d_1}(x_0, r)} \cap \{XS(x_n)\}$. Hence all the conditions of Theorem 2.1 are satisfied. Now, we have $\{XS(x_n)\}$ is a sequence in $\overline{B_{d_1}(x_0, r)}$, $\alpha(x_n, x_{n+1}) \ge 1$ and $\{XS(x_n)\} \longrightarrow 0 \in \overline{B_{d_1}(x_0, r)}$. Also, $\alpha(x_n, 0) \ge 1$ or $\alpha(0, x_n) \ge 1$ for all $n \in \mathbb{N} \cup \{0\}$. Moreover, S has a fixed point 0.

3. Fixed point results for graphic contractions

Consistent with Jachymski [16], let (X, d) be a metric space and Δ denotes the diagonal of the Cartesian product X × X. Consider a directed graph G such that the set V(G) of its vertices coincides with X, and the set E(G) of its edges contains all loops, i.e., E(G) $\supseteq \Delta$. We assume G has no parallel edges, so we can identify G with the pair (V(G), E(G)). Moreover, we may treat G as a weighted graph (see [16]) by assigning to each edge the distance between its vertices. If x and y are vertices in a graph G, then a path in G from x to y of length N (N $\in \mathbb{N}$) is a sequence $\{x_i\}_{i=0}^N$ of N + 1 vertices such that $x_0 = x, x_N = y$ and $(x_{n-1}, x_n) \in E(G)$ for i = 1, ..., N. A graph G is connected if there is a path between any two vertices. G is weakly connected if \tilde{G} is connected (see for details [10, 11, 16]).

Definition 3.1 ([31]). Let X be a nonempty set and G = (V(G), E(G)) be a graph such that V(G) = X, and let $T : X \to CB(X)$. T is said to be graph preserving if it satisfies the following:

• if $(x, y) \in E(G)$, then $(u, v) \in E(G)$ for all $u \in Tx$ and $v \in Ty$.

In this section, we give fixed point results on a dislocated metric space endowed with a graph.

Theorem 3.2. Let (X, d_1) be a complete dislocated metric space endowed with a graph G, r > 0, $x_0 \in B_{d_1}(x_0, r)$, $S : X \to P(X)$ and $\{XS(x_n)\}$ be a sequence in X generated by x_0 with $(x_0, x_1) \in E(G)$. Assume the following conditions hold:

(i) S is graph preserving for all $x, y \in \overline{B}_{d_1}(x_0, r)$,

(ii) there exist $a, b \in [0, 1)$ with a + 2b < 1, such that

$$H_{d_{l}}(Sx, Sy) \leq ad_{l}(x, y) + b\left[d_{l}(x, Sx) + d_{l}(y, Sy)\right]$$

$$(3.1)$$

for all $x, y \in \overline{B_{d_1}(x_0, r)} \cap \{XS(x_n)\}$ and $(x, y) \in E(G)$,

(iii) there exists $x_0 \in \overline{B_{d_1}(x_0, r)}$, such that $d_1(x_0, Sx_0) \leq (1 - \lambda) r$, where $\lambda = \frac{a + b}{1 - b}$.

Then $\{XS(x_n)\}$ is a sequence in $\overline{B_{d_1}(x_0, r)}$, $(x_n, x_{n+1}) \in E(G)$ and $\{XS(x_n)\} \to x^*$. Also if $(x_n, x^*) \in E(G)$ or $(x^*, x_n) \in E(G)$ for all $n \in \mathbb{N} \cup \{0\}$ and inequality (3.1) holds for all $x, y \in (\overline{B_{d_1}(x_0, r)} \cap \{XS(x_n)\}) \cup \{x^*\}$, then x^* is a fixed point of S in $\overline{B_{d_1}(x_0, r)}$.

Proof. Define $\alpha : X \times X \rightarrow [0, +\infty)$ by

$$\alpha(x,y) = \begin{cases} 1, & \text{if } (x,y) \in E(G), \\ 0, & \text{otherwise.} \end{cases}$$

As {XS(x_n)} is a sequence in X generated by x_0 with $(x_0, x_1) \in E(G)$, we have $\alpha(x_0, x_1) \ge 1$. Let, $\alpha(x, y) \ge 1$, then $(x, y) \in E(G)$. From (i), we have $(u, v) \in E(G)$ for all $u \in Sx$ and $v \in Sy$. This implies that $\alpha(u, v) = 1$ for all $u \in Sx$ and $v \in Sy$. This further implies that inf{ $\alpha(u, v) : u \in Sx, v \in Sy$ } = 1. Thus S is a semi α_* -admissible multifunction on $\overline{B_{d_1}(x_0, r)}$. Also, if $(x, y) \in E(G)$, we have $\alpha(x, y) = 1$ and hence, $\alpha_*(Sx, Sy) = 1$. Now, condition (ii) can be written as

$$\alpha_*(Sx,Sy)H_{d_1}(Sx,Sy) = H_{d_1}(Sx,Sy) \leq ad_1(x,y) + b[d_1(x,Sx) + d_1(y,Sy)]$$

for all $x, y \in \overline{B_{d_1}(x_0, r)} \cap \{XS(x_n)\}$. By including condition (iii) we obtain all the conditions of Theorem 2.1 are satisfied. Now, by Theorem 2.1, we have $\{XS(x_n)\}$ is a sequence in $\overline{B_{d_1}(x_0, r)}$, $\alpha(x_n, x_{n+1}) \ge 1$, that is, $(x_n, x_{n+1}) \in E(G)$ and $\{XS(x_n)\} \to x^* \in \overline{B_{d_1}(x_0, r)}$. Also if $(x_n, x^*) \in E(G)$ or $(x^*, x_n) \in E(G)$ for all $n \in \mathbb{N} \cup \{0\}$ and inequality (3.1) holds for all $x, y \in (\overline{B_{d_1}(x_0, r)} \cap \{XS(x_n)\}) \cup \{x^*\}$, then, we have $\alpha(x_n, x^*) \ge 1$ or $\alpha(x^*, x_n) \ge 1$ for all $n \in \mathbb{N} \cup \{0\}$ and inequality (2.1) holds for all $x, y \in (\overline{B_{d_1}(x_0, r)} \cap \{XS(x_n)\}) \cup \{x^*\}$. Again, by Theorem 2.1, S has a fixed point x^* in $\overline{B_{d_1}(x_0, r)}$.

Corollary 3.3. Let (X, d_1) be a complete dislocated metric space endowed with a graph G, r > 0, $x_0 \in \overline{B_{d_1}(x_0, r)}$, $S : X \to P(X)$ and $\{XS(x_n)\}$ be a sequence in X generated by x_0 with $(x_0, x_1) \in E(G)$. Assume the following conditions hold:

(i) S is graph preserving for all $x, y \in B_{d_1}(x_0, r)$;

(ii) there exists $b \in [0, \frac{1}{2})$, such that

$$H_{d_{1}}(Sx, Sy) \leq b [d_{1}(x, Sx) + d_{1}(y, Sy)]$$
(3.2)

for all $x, y \in \overline{B_{d_1}(x_0, r)} \cap \{XS(x_n)\}$ and $(x, y) \in E(G)$;

(iii) there exists $x_0 \in \overline{B_{d_1}(x_0, r)}$, such that $d_1(x_0, Sx_0) \leq (1 - \lambda) r$, where $\lambda = \frac{b}{1 - b}$.

Then $\{XS(x_n)\}$ is a sequence in $\overline{B_{d_1}(x_0, r)}$, $(x_n, x_{n+1}) \in E(G)$ and $\{XS(x_n)\} \to x^*$. Also if $(x_n, x^*) \in E(G)$ or $(x^*, x_n) \in E(G)$ for all $n \in \mathbb{N} \cup \{0\}$ and inequality (3.2) holds for all $x, y \in (\overline{B_{d_1}(x_0, r)} \cap \{XS(x_n)\}) \cup \{x^*\}$, then x^* is a fixed point of S in $\overline{B_{d_1}(x_0, r)}$.

Proof. In Theorem 3.2, take a = 0 to get fixed point $x^* \in \overline{B(x_0, r)}$ such that $x^* \in Sx^*$.

Corollary 3.4. Let (X, d_1) be a complete dislocated metric space endowed with a graph G, r > 0, $x_0 \in \overline{B_{d_1}(x_0, r)}$, $S : X \to P(X)$ and $\{XS(x_n)\}$ be a sequence in X generated by x_0 with $(x_0, x_1) \in E(G)$. Assume the following conditions hold:

- (i) S is graph preserving for all $x, y \in B_{d_1}(x_0, r)$,
- (ii) there exists $a \in [0, 1)$, such that

$$H_{d_1}(Sx, Sy) \leqslant ad_1(x, y) \tag{3.3}$$

for all $x, y \in \overline{B_{d_1}(x_0, r)} \cap \{XS(x_n)\}$ and $(x, y) \in E(G)$, (iii) there exists $x_0 \in \overline{B_{d_1}(x_0, r)}$, such that $d_1(x_0, Sx_0) \leq (1 - a) r$.

Then $\{XS(x_n)\}$ is a sequence in $\overline{B_{d_1}(x_0, r)}$, $(x_n, x_{n+1}) \in E(G)$ and $\{XS(x_n)\} \to x^*$. Also if $(x_n, x^*) \in E(G)$ or $(x^*, x_n) \in E(G)$ for all $n \in \mathbb{N} \cup \{0\}$ and inequality (3.3) holds for all $x, y \in (\overline{B_{d_1}(x_0, r)} \cap \{XS(x_n)\}) \cup \{x^*\}$, then x^* is a fixed point of S in $\overline{B_{d_1}(x_0, r)}$.

Proof. In Theorem 3.2, take b = 0 to get fixed point $x^* \in \overline{B(x_0, r)}$ such that $x^* \in Sx^*$.

Remark 3.5. We can obtain the metric version of all the theorems which are still not presented in the literature.

Acknowledgment

The authors sincerely thank the learned referee for a careful reading and thoughtful comments. The present version of the paper owes much to the precise and kind remarks of anonymous referees.

References

- [1] M. U. Ali, T. Kamran, $On(\alpha^*, \psi)$ -contractive multi-valued mappings, Fixed Point Theory Appl., **2013** (2013), 7 pages. 1
- [2] A Amini-Harandi, Metric-like spaces, partial metric spaces and fixed points, Fixed Point Theory Appl., 2012 (2012), 10 pages. 1
- [3] M. Arshad, A. Azam, M. Abbas, A. Shoaib, Fixed points results of dominated mappings on a closed ball in ordered partial metric spaces without continuity, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 76 (2014), 123–134.
- [4] M. Arshad, A. Shoaib, M. Abbas, A. Azam, *Fixed points of a pair of Kannan type mappings on a closed ball in ordered partial metric spaces*, Miskolc Math. Notes, **14** (2013), 769–784.
- [5] M. Arshad, A. Shoaib, I. Beg, Fixed point of a pair of contractive dominated mappings on a closed ball in an ordered dislocated metric space, Fixed Point Theory Appl., 2013 (2013), 15 pages. 1, 1.1, 1.2, 1.3
- [6] M. Arshad, A. Shoaib, P. Vetro, Common fixed points of a pair of Hardy Rogers type mappings on a closed ball in ordered dislocated metric spaces, J. Funct. Spaces Appl., 2013 (2013), 9 pages. 1
- [7] J. H. Asl, S. Rezapour, N. Shahzad, On fixed points of α-ψ-contractive multifunctions, Fixed Point Theory Appl., 2012 (2012), 6 pages. 1
- [8] A. Azam, M. Arshad, Fixed points of a sequence of locally contractive multivalued maps, Comput. Math. Appl., 57 (2009), 96–100. 1
- [9] A. Azam, N. Mehmood, J. Ahmad, S. Radenović, *Multivalued fixed point theorems in cone* b-metric spaces, J. Inequal. Appl., 2013 (2013), 9 pages. 1
- [10] F. Bojor, Fixed point theorems for Reich type contractions on metric spaces with a graph, Nonlinear Anal., 75 (2012), 3895–3901. 3
- [11] R. Espínola, W. A. Kirk, Fixed point theorems in R-trees with applications to graph theory, Topology Appl., 153 (2006), 1046–1055. 3
- [12] P. Hitzler, A. K. Seda, Dislocated topologies, J. Electr. Eng., 51 (2000), 3-7. 1
- [13] N. Hussain, J. Ahmad, A. Azam, Generalized fixed point theorems for multi-valued α-ψ-contractive mappings, J. Inequal. Appl., 2014 (2014), 15 pages. 1
- [14] N. Hussain, M. Arshad, A. Shoaib, Fahimuddin, Common fixed point results for α-ψ-contractions on a metric space endowed with graph, J. Inequal. Appl., 2014 (2014), 14 pages. 1
- [15] N. Hussain, P. Salimi, A. Latif, *Fixed point results for single and set-valued* α-η-ψ-contractive mappings, Fixed Point Theory Appl., 2013 (2013), 23 pages. 1

- [16] J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc. Amer. Math. Soc., 136 (2008), 1359–1373. 3
- [17] E. Karapınar, P. Salimi, Dislocated metric space to metric spaces with some fixed point theorems, Fixed Point Theory Appl., 2013 (2013), 19 pages. 1, 1.1
- [18] M. A. Kutbi, M. Arshad, A. Hussain, On modified $(\alpha \eta)$ -contractive mappings, Abstr. Appl. Anal., 2014 (2014), 7 pages. 1
- [19] S. G. Matthews, *Partial metric topology*, Papers on general topology and applications, Flushing, NY, (1992), Ann. New York Acad. Sci., New York Acad. Sci., New York, **728** (1994), 183–197. 1
- [20] S. B. Nadler, Jr., Multi-valued contraction mappings, Pacific J. Math., 30 (1969), 475-488. 1
- [21] M. Nazam, M. Arshad, On a fixed point theorem with application to integral equations, Int. J. Anal., 2016 (2016), 7 pages. 1
- [22] M. Nazam, M. Arshad, M. Abbas, Some fixed point results for dualistic rational contractions, Appl. Gen. Topol., 17 (2016), 199–209. 1
- [23] M. Nazam, M. Arshad, C. Park, Fixed point theorems for improved α-Geraghty contractions in partial metric spaces, J. Nonlinear Sci. Appl., 9 (2016), 4436–4449. 1
- [24] S. Reich, Some remarks concerning contraction mappings, Canad. Math. Bull., 14 (1971), 121–124. 1
- [25] Y.-J. Ren, J.-L. Li, Y.-R. Yu, Common fixed point theorems for nonlinear contractive mappings in dislocated metric spaces, Abstr. Appl. Anal., 2013 (2013), 5 pages. 1
- [26] B. Samet, M. Rajović, R. Lazović, R. Stojiljković, Common fixed-point results for nonlinear contractions in ordered partial metric spaces, Fixed Point Theory Appl., 2011 (2011), 14 pages. 1
- [27] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for αψ-contractive type mappings, Nonlinear Anal., 75 (2012), 2154–2165. 1
- [28] A. Shoaib, M. Arshad, J. Ahmad, Fixed point results of locally contractive mappings in ordered quasi-partial metric spaces, Scientific World J., 2013 (2013), 8 pages. 1
- [29] A. Shoaib, M. Arshad, A. Azam, Fixed points of a pair of locally contractive mappings in ordered partial metric spaces, Mat. Vesnik, 67 (2015), 26–38.
- [30] A. Shoaib, M. Arshad, M. A. Kutbi, Common fixed points of a pair of Hardy Rogers type mappings on a closed ball in ordered partial metric spaces, J. Comput. Anal. Appl., **17** (2014), 255–264. 1
- [31] J. Tiammee, S. Suantai, *Coincidence point theorems for graph-preserving multi-valued mappings*, Fixed Point Theory Appl., **2014** (2014), 11 pages. **3**.1