Fixed point results for multivalued mappings on a sequence in a closed ball with applications

Abdullah Shoaib ${ }^{\mathrm{a}, *}$, Akbar Azam $^{\mathrm{b}}$, Muhammad Arshad ${ }^{\text {c }}$, Eskandar Ameerr ${ }^{\text {c, d }}$
${ }^{a}$ Department of Mathematics and Statistics, Riphah International University, Islamabad - 44000, Pakistan.
${ }^{b}$ Department of Mathematics, COMSATS Institute of Information Technology, Chack Shahzad, Islamabad - 44000, Pakistan.
${ }^{\text {c Department of Mathematics, International Islamic University, H-10, Islamabad - 44000, Pakistan. }}$
${ }^{d}$ Department of Mathematics, Taiz University, Taiz, Yemen.

Abstract

In this paper, we establish fixed point results for semi α_{*}-admissible multivalued mappings satisfying a contractive condition of Reich type only for the elements in a sequence contained in closed ball in a complete dislocated metric space. As an application, we derive some new fixed point theorems for ordered metric space and metric space endowed with a graph. An example has been constructed to demonstrate the novelty of our results. Our results unify, extend, and generalize several comparable results in the existing literature. © 2017 All rights reserved.

Keywords: Fixed point, complete dislocated metric space, closed ball, semi α_{*}-admissible.
2010 MSC: 46S40, 47H10, 54H25.

1. Introduction and preliminaries

Let $S: X \longrightarrow X$ be a mapping. A point $x \in X$ is called a fixed point of S if $x=S x$. Many results appeared in literature related to the fixed point of mappings which are contractive on the whole domain. It is possible that $S: X \longrightarrow X$ is not a contraction but $S: Y \longrightarrow X$ is a contraction, where Y is a closed ball in X. One can obtain fixed point results for such mapping by using suitable conditions. Recently, Hussain et al. [14] proved a result concerning the existence of fixed points of a mapping satisfying a contractive condition on closed ball (see also [3-6, 28-30]).

The notion of dislocated topologies have useful applications in the context of logic programming semantics (see [12]). Dislocated metric space (metric-like space) (see [2, 17, 25]) is a generalization of partial metric space (see [19, 26]). Karapınar et al. [17] noticed that the notions metric-like space [2] and dislocated metric space [12] are exactly the same. They also discussed the existence and uniqueness of a fixed point of a cyclic mapping in the context of metric-like spaces. Arshad et al. [5, 21, 22] noticed that the closed ball, Cauchy sequence, and completeness defined on these spaces are different from each other.

[^0]They remarked that it is better to find a fixed point in a closed ball in dislocated metric space. They also gave an example of a space which was complete dislocated metric space but was not complete metric-like space.

Nadler [20], introduced a study of fixed point theorems involving multivalued mappings (see also $[8,9])$. The existence of fixed points of α-admissible mappings in complete metric spaces has been studied by several researchers (see [18, 23,27]). Asl et al. [7] generalized these notions by introducing the concepts of $\alpha_{*}-\psi$ contractive multifunctions, α_{*}-admissible mapping and obtained some fixed point results for these multifunctions (see also [1, 13, 15]). On the other hand, [24] established some results concerning contraction mappings. In this paper we discuss some new fixed point results for Reich type multivalued mappings in a closed ball in complete dislocated metric space.

The following definitions and results will be needed in the sequel.
Definition $1.1([5,17])$. Let X be a nonempty set and let $d_{l}: X \times X \rightarrow[0, \infty)$ be a function, called a dislocated metric (or simply d_{l}-metric), if for any $x, y, z \in X$, the following conditions hold:
(i) if $d_{l}(x, y)=0$, then $x=y$;
(ii) $d_{l}(x, y)=d_{l}(y, x)$;
(iii) $d_{l}(x, y) \leqslant d_{l}(x, z)+d_{l}(z, y)$.

The pair $\left(X, d_{l}\right)$ is called a dislocated metric space.
It is clear that if $d_{l}(x, y)=0$, then from (i), $x=y$. But if $x=y, d_{l}(x, y)$ may not be 0 . For $x \in X$ and $\varepsilon>0, \overline{B(x, \varepsilon)}=\left\{y \in X: d_{l}(x, y) \leqslant \varepsilon\right\}$ is a closed ball in $\left(X, d_{l}\right)$.

Example 1.2 ([5]). If $X=R^{+} \cup\{0\}$, then $d_{l}(x, y)=x+y$ defines a dislocated metric d_{l} on X.
Definition 1.3 ([5]). Let $\left(X, d_{l}\right)$ be a dislocated metric space.
(i) A sequence $\left\{x_{n}\right\}$ in $\left(X, d_{l}\right)$ is called Cauchy sequence if given $\varepsilon>0$, there corresponds $n_{0} \in N$ such that for all $n, m \geqslant n_{0}$ we have $d_{l}\left(x_{m}, x_{n}\right)<\varepsilon$ or $\lim _{n, m \rightarrow \infty} d_{l}\left(x_{n}, x_{m}\right)=0$.
(ii) A sequence $\left\{x_{n}\right\}$ dislocated-converges (for short d_{l}-converges) to x if $\lim _{n \rightarrow \infty} d_{l}\left(x_{n}, x\right)=0$. In this case x is called a d_{l}-limit of $\left\{x_{n}\right\}$.
(iii) $\left(X, d_{l}\right)$ is called complete if every Cauchy sequence in X converges to a point $x \in X$ such that $d_{l}(x, x)=0$.

Definition 1.4. Let K be a nonempty subset of dislocated metric space X and let $x \in X$. An element $y_{0} \in K$ is called a best approximation in K if

$$
d_{l}(x, K)=d_{l}\left(x, y_{0}\right), \text { where } d_{l}(x, K)=\inf _{y \in K} d_{l}(x, y)
$$

If each $x \in X$ has at least one best approximation in K, then K is called a proximinal set.
We denote $C P(X)$ be the set of all closed proximinal subsets of X. Let Ψ denote the family of all nondecreasing functions $\psi:[0,+\infty) \rightarrow[0,+\infty)$ such that $\sum_{n=1}^{+\infty} \psi^{n}(t)<+\infty$ for all $t>0$, where ψ^{n} is the $\mathrm{n}^{\text {th }}$ iterate of ψ. If $\psi \in \Psi$, then $\psi(\mathrm{t})<\mathrm{t}$ for all $\mathrm{t}>0$.

Definition 1.5. Let $S: X \rightarrow P(X)$ be a multivalued mapping and $\alpha: X \times X \rightarrow[0,+\infty)$. Let $A \subseteq X$, we say that S is semi α_{*}-admissible on A, whenever $\alpha(x, y) \geqslant 1$ implies that $\alpha_{*}(S x, S y) \geqslant 1$ for all $x, y \in A$, where $\alpha_{*}(S x, S y)=\inf \{\alpha(a, b): a \in S x, b \in S y\}$. If $A=X$, then we say that S is α_{*}-admissible on X.

Definition 1.6. The function $H_{d_{l}}: P(X) \times P(X) \rightarrow X$, defined by

$$
H_{d_{l}}(A, B)=\max \left\{\sup _{a \in A} d_{l}(a, B), \sup _{b \in B} d_{l}(A, b)\right\}
$$

is called dislocated Hausdorff-Pompeiu metric on $P(X)$. Also, $\left(P(X), H_{d_{q}}\right)$ is known as dislocated quasi Hausdorff-Pompeiu metric space.

Lemma 1.7. Let $\left(\mathrm{X}, \mathrm{d}_{\mathrm{l}}\right)$ be a dislocated metric space. Let $\left(\mathrm{P}(\mathrm{X}), \mathrm{H}_{\mathrm{d}_{\mathrm{l}}}\right)$ is a dislocated Hausdorff-Pompeiu metric space on $P(X)$. Then for all $A, B \in C P(X)$ and for each $a \in A$ there exists $b_{a} \in B$ satisfying $d_{l}(a, B)=d_{l}\left(a, b_{a}\right)$, then $\mathrm{H}_{\mathrm{d}_{\mathrm{l}}}(A, B) \geqslant \mathrm{d}_{\mathrm{l}}\left(\mathrm{a}, \mathrm{b}_{\mathrm{a}}\right)$.

Proof. If $H_{d_{l}}(A, B)=\sup _{a \in A} d_{l}(a, B)$, then $H_{d_{l}}(A, B) \geqslant d_{l}(a, B)$ for each $a \in A$. As B is a proximinal set, so for each $a \in X$, there exists at least one best approximation $b_{a} \in B$ that satisfies $d_{l}(a, B)=d_{l}\left(a, b_{a}\right)$. Now we have, $H_{d_{l}}(A, B) \geqslant d_{l}\left(a, b_{a}\right)$. Now $H_{d_{l}}(A, B)=\sup _{b \in B} d_{l}(A, b) \geqslant \sup _{a \in A} d_{l}(a, B)$, hence, the lemma is proved.

2. Main result

Let $\left(X, d_{l}\right)$ be a dislocated metric space, $x_{0} \in X$ and $S: X \rightarrow P(X)$ be a multivalued mapping on X. Then there exists $x_{1} \in S x_{0}$ such that $d_{l}\left(x_{0}, S x_{0}\right)=d_{l}\left(x_{0}, x_{1}\right)$. Let $x_{2} \in S x_{1}$ be such that $d_{l}\left(x_{1}, S x_{1}\right)=$ $d_{l}\left(x_{1}, x_{2}\right)$. Continuing this process, we construct a sequence x_{n} of points in X such that $x_{n+1} \in S x_{n}$ and $d_{l}\left(x_{n}, S x_{n}\right)=d_{l}\left(x_{n}, x_{n+1}\right)$. We denote this iterative sequence $\left\{X S\left(x_{n}\right)\right\}$ and say that $\left\{X S\left(x_{n}\right)\right\}$ is a sequence in X generated by x_{0}.

Theorem 2.1. Let $\left(X, d_{l}\right)$ be a complete dislocated metric space, $r>0, x_{0} \in \overline{\mathrm{~B}_{\mathrm{d}_{l}}\left(\mathrm{x}_{0}, r\right)} \alpha: X \times X \longrightarrow[0,+\infty)$, $S: X \rightarrow P(X)$ be a semi α_{*}-admissible multifunction on $\overline{\mathrm{B}_{\mathrm{d}_{l}}\left(\mathrm{x}_{0}, r\right)}$ and $\left\{\mathrm{XS}\left(\mathrm{x}_{\mathrm{n}}\right)\right\}$ be a sequence in X generated by $\mathrm{x}_{0}, \alpha\left(\mathrm{x}_{0}, \mathrm{x}_{1}\right) \geqslant 1$. Suppose that there exist $\mathrm{a}, \mathrm{b} \in[0,1)$ with $\mathrm{a}+2 \mathrm{~b}<1$ such that

$$
\begin{equation*}
\alpha_{*}(S x, S y) H_{d_{l}}(S x, S y) \leqslant \operatorname{ad}_{l}(x, y)+b\left[d_{l}(x, S x)+d_{l}(y, S y)\right] \tag{2.1}
\end{equation*}
$$

for all $x, y \in \overline{\mathrm{~B}_{\mathrm{d}_{\mathrm{l}}}\left(\mathrm{x}_{0}, \mathrm{r}\right)} \cap\left\{\mathrm{XS}\left(\mathrm{x}_{\mathrm{n}}\right)\right\}$, and

$$
\begin{equation*}
d_{l}\left(x_{0}, S x_{0}\right) \leqslant(1-\lambda) r, \text { where } \lambda=\frac{a+b}{1-b} \tag{2.2}
\end{equation*}
$$

Then $\left\{\mathrm{XS}\left(\mathrm{x}_{\mathrm{n}}\right)\right\}$ is a sequence in $\overline{\mathrm{B}_{\mathrm{d}_{l}}\left(\mathrm{x}_{0}, \mathrm{r}\right)}$ and $\left\{\mathrm{XS}\left(\mathrm{x}_{\mathrm{n}}\right)\right\} \rightarrow \mathrm{x}^{*} \in \overline{\mathrm{~B}_{\mathrm{d}_{l}}\left(\mathrm{x}_{0}, \mathrm{r}\right)}$ and $\alpha\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right) \geqslant 1$ for $\mathrm{x}_{n}, \mathrm{x}_{\mathrm{n}+1} \in$ $\left\{\mathrm{XS}\left(\mathrm{x}_{\mathrm{n}}\right)\right\}, \mathrm{n} \in \mathbb{N} \cup\{0\}$. Also, if $\alpha\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}^{*}\right) \geqslant 1$ or $\alpha\left(\mathrm{x}^{*}, \mathrm{x}_{\mathrm{n}}\right) \geqslant 1$ for all $\mathrm{n} \in \mathbb{N} \cup\{0\}$ and inequality (2.1) holds for all $x, y \in\left(\overline{\mathrm{~B}_{\mathrm{d}_{l}}\left(\mathrm{x}_{0}, r\right)} \cap\left\{\mathrm{XS}\left(\mathrm{x}_{\mathrm{n}}\right)\right\}\right) \cup\left\{\mathrm{x}^{*}\right\}$, then S has a fixed point in $\overline{\mathrm{B}_{\mathrm{d}_{l}}\left(\mathrm{x}_{0}, r\right)}$.

Proof. As $x_{0} \in \overline{B_{d_{l}}\left(x_{0}, r\right)}$, and $S: X \rightarrow P(X)$ is a multivalued mapping on X, then there exists $x_{1} \in S x_{0}$ such that $d_{l}\left(x_{0}, S x_{0}\right)=d_{l}\left(x_{0}, x_{1}\right)$. If $x_{0}=x_{1}$, then x_{0} is a fixed point in $\overline{B_{d_{l}}\left(x_{0}, r\right)}$ of S. Let $x_{0} \neq x_{1}$. From (2.2), we get,

$$
d_{l}\left(x_{0}, x_{1}\right) \leqslant(1-\lambda) r<r .
$$

It follows that $x_{1} \in \overline{\mathrm{~B}_{\mathrm{d}_{l}}\left(x_{0}, r\right)}$. As $\alpha\left(x_{0}, x_{1}\right) \geqslant 1$ and S is semi α_{*}-admissible multifunction on $\overline{B_{d_{l}}\left(x_{0}, r\right)}$, so $\alpha_{*}\left(S x_{0}, S x_{1}\right) \geqslant 1$. As $\alpha_{*}\left(S x_{0}, S x_{1}\right) \geqslant 1, x_{1} \in S x_{0}$ and $x_{2} \in S x_{1}$, so $\alpha\left(x_{1}, x_{2}\right) \geqslant 1$. As S is semi α_{*}-admissible multifunction on $\overline{B_{d_{l}}\left(x_{0}, r\right)}$, thus, we have $\alpha_{*}\left(S x_{1}, S x_{2}\right) \geqslant 1$. As $\alpha_{*}\left(S x_{1}, S x_{2}\right) \geqslant 1$, we have $\alpha\left(x_{2}, x_{3}\right) \geqslant 1$, which further implies $\alpha_{*}\left(S x_{2}, S x_{3}\right) \geqslant 1$. Continuing this process, we have $\alpha_{*}\left(S x_{j-1}, S x_{j}\right) \geqslant 1$. Now,

$$
\begin{aligned}
d_{l}\left(x_{j}, x_{j+1}\right) \leqslant H_{d_{l}}\left(S x_{j-1}, S x_{j}\right) & \leqslant \alpha_{*}\left(S x_{j-1}, S x_{j}\right) H_{d_{l}}\left(S x_{j-1}, S x_{j}\right) \\
& \leqslant a d_{l}\left(x_{j-1}, x_{j}\right)+b\left[d_{l}\left(x_{j-1}, S x_{j-1}\right)+d_{l}\left(x_{j}, S x_{j}\right)\right] \\
& =a d_{l}\left(x_{j-1}, x_{j}\right)+b d_{l}\left(x_{j-1}, x_{j}\right)+b d_{l}\left(x_{j}, x_{j+1}\right) \\
& \leqslant(a+b) d_{l}\left(x_{j-1}, x_{j}\right)+b d_{l}\left(x_{j}, x_{j+1}\right) \\
& \leqslant \frac{a+b}{1-b} d_{l}\left(x_{j-1}, x_{j}\right)=\lambda d_{l}\left(x_{j-1}, x_{j}\right) \leqslant \cdots \leqslant \lambda^{j} d_{l}\left(x_{0}, x_{1}\right)
\end{aligned}
$$

which implies,

$$
\begin{equation*}
d_{l}\left(x_{j}, x_{j+1}\right) \leqslant \lambda^{j} d_{l}\left(x_{0}, x_{1}\right) \tag{2.3}
\end{equation*}
$$

Now,

$$
\begin{aligned}
d_{\mathfrak{l}}\left(x_{0}, x_{j+1}\right) & \leqslant d_{\mathfrak{l}}\left(x_{0}, x_{1}\right)+\cdots+d_{l}\left(x_{j}, x_{j+1}\right) \\
& \leqslant d_{\mathfrak{l}}\left(x_{0}, x_{1}\right)+\cdots+\lambda^{j} d_{\mathfrak{l}}\left(x_{0}, x_{1}\right) \\
& =\left(1+\lambda+\cdots+\lambda^{j}\right) d_{l}\left(x_{0}, x_{1}\right) \\
& \leqslant(1-\lambda)\left(1+\lambda+\cdots+\lambda^{j}\right) r<r .
\end{aligned}
$$

Thus $x_{j+1} \in \overline{B_{d_{l}}\left(x_{0}, r\right)}$. Hence by induction, $x_{n} \in \overline{B_{d_{l}}\left(x_{0}, r\right)}$ and $\alpha\left(x_{n}, x_{n+1}\right) \geqslant 1$ for all $n \in \mathbb{N}$. As S is semi α_{*}-admissible multifunction on $\overline{B_{d_{l}}\left(x_{0}, r\right)}$, therefore $\alpha_{*}\left(S x_{n}, S x_{n+1}\right) \geqslant 1$ for all $n \in \mathbb{N} \cup\{0\}$. Now inequality (2.3) can be written as

$$
\begin{equation*}
d_{l}\left(x_{n}, x_{n+1}\right) \leqslant \lambda^{n} d_{l}\left(x_{0}, x_{1}\right) \text { for all } n \in N . \tag{2.4}
\end{equation*}
$$

Now,

$$
d_{l}\left(x_{n}, x_{n+i}\right) \leqslant d_{l}\left(x_{n}, x_{n+1}\right)+\ldots+d_{l}\left(x_{n+i-1}, x_{n+i}\right) \leqslant \frac{\lambda^{n}\left(1-\lambda^{i}\right)}{1-\lambda} d_{l}\left(x_{0}, x_{1}\right) \longrightarrow 0 \text { as } n \rightarrow \infty .
$$

Thus, we proved that $\left\{x_{n}\right\}$ is a Cauchy sequence in $\left(\overline{B_{d_{1}}\left(x_{0}, r\right)}, d_{l}\right)$. As every closed ball in a complete dislocated metric space is complete, so there exists $x^{*} \in \bar{B}_{d_{l}}\left(x_{0}, r\right)$ such that $x_{n} \rightarrow x^{*}$, and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d_{l}\left(x_{n}, x^{*}\right)=0 . \tag{2.5}
\end{equation*}
$$

Hence $\left\{X S\left(x_{n}\right)\right\}$ is a sequence in $\overline{B_{d_{l}}\left(x_{0}, r\right)}$ generated by x_{0} and $\left\{X S\left(x_{n}\right)\right\} \rightarrow x^{*} \in \overline{B_{d_{l}}\left(x_{0}, r\right)}$ and $\alpha\left(x_{n}, x_{n+1}\right) \geqslant$ 1 for $x_{n}, x_{n+1} \in\left\{X S\left(x_{n}\right)\right\}, n \in \mathbb{N} \cup\{0\}$. As $\alpha_{*}\left(S x_{n}, S x_{n+1}\right) \geqslant 1$ for all $n \in \mathbb{N} \cup\{0\}$, we have $\alpha\left(x_{n+1}, x_{n+2}\right) \geqslant$ 1 for all $n \in \mathbb{N} \cup\{0\}$. By assumption, we have $\alpha\left(x_{n}, x^{*}\right) \geqslant 1$ for all $n \in \mathbb{N} \cup\{0\}$. Thus $\alpha_{*}\left(S x_{n}, S x^{*}\right) \geqslant 1$. Now,

$$
\begin{aligned}
d_{l}\left(x^{*}, S x^{*}\right) & \leqslant d_{l}\left(x^{*}, x_{n+1}\right)+d_{l}\left(x_{n+1}, S x^{*}\right) \\
& \leqslant d_{l}\left(x^{*}, x_{n+1}\right)+H_{d_{l}}\left(S x_{n}, S x^{*}\right) \\
& \leqslant d_{l}\left(x^{*}, x_{n+1}\right)+\alpha_{*}\left(S x_{n}, S x^{*}\right) H_{d_{l}}\left(S x_{n}, S x^{*}\right) \\
& \leqslant d_{l}\left(x^{*}, x_{n+1}\right)+d_{l}\left(x_{n}, x^{*}\right)+b\left[d_{l}\left(x_{n}, S x_{n}\right)+d_{l}\left(x^{*}, S x^{*}\right)\right] .
\end{aligned}
$$

Letting $n \rightarrow \infty$ in the previous inequality, by using inequality (2.4) and (2.5), we get

$$
(1-b) d_{l}\left(x^{*}, S x^{*}\right) \leqslant 0 .
$$

Similarly, if $\alpha\left(x^{*}, x_{n}\right) \geqslant 1$ for all $n \in N \cup\{0\}$, thus $\alpha_{*}\left(S x^{*}, S x_{n}\right) \geqslant 1$. Now,

$$
(1-b) d_{l}\left(S x^{*}, x^{*}\right) \leqslant 0 .
$$

We obtain, $d_{l}\left(S x^{*}, x^{*}\right)=0$. Hence $x^{*} \in S x^{*}$. So S has a fixed point in $\overline{B_{d_{l}}\left(x_{0}, r\right)}$.
Let X be a nonempty set. Then $\left(X, \underline{\Omega}, d_{l}\right)$ is called a preordered dislocated metric space if d_{l} is a dislocated metric on X and is a preorder on X. Let $\left(X, \preceq, d_{l}\right)$ be a preordered metric space and $A, B \subseteq X$. We say that $A \preceq B$ whenever for each $a \in A$ there exists such that $a \preceq b$. Also, we say that $A \preceq_{r} B$ whenever for each $a \in A$ and $b \in B$, we have $a \preceq b$.

Corollary 2.2. Let $\left(X, \preceq, d_{l}\right)$ be a preordered complete dislocatedmetric space, $r>0, x_{0} \in \overline{B_{d_{l}}\left(x_{0}, r\right)}, S: X \rightarrow P(X)$ and $\left\{\mathrm{XS}\left(\mathrm{x}_{\mathrm{n}}\right)\right\}$ be a sequence in X generated by x_{0} with $\mathrm{x}_{0} \preceq \mathrm{x}_{1}$. Suppose there exist $\mathrm{a}, \mathrm{b} \in[0,1)$ with $\mathrm{a}+2 \mathrm{~b}<1$ such that

$$
\begin{equation*}
H_{d_{l}}(S x, S y) \leqslant a d_{l}(x, y)+b\left[d_{l}(x, S x)+d_{l}(y, S y)\right] \tag{2.6}
\end{equation*}
$$

for all x, y in $\overline{\mathrm{B}_{\mathrm{d}_{l}}\left(\mathrm{x}_{0}, r\right)} \cap\left\{\mathrm{XS}\left(\mathrm{x}_{\mathrm{n}}\right)\right\}$ with $\mathrm{x} \preceq \mathrm{y}$, and

$$
d_{l}\left(x_{0}, S x_{0}\right) \leqslant(1-\lambda) r \text {, where } \lambda=\frac{a+b}{1-b} .
$$

If $\mathrm{x} \preceq \mathrm{y}$ implies $\mathrm{S} x \preceq_{r}$ Sy for all $\mathrm{x}, \mathrm{y} \in \overline{\mathrm{B}_{\mathrm{d}_{l}}\left(\mathrm{x}_{0}, \mathrm{r}\right)} \cap\left\{\mathrm{XS}\left(\mathrm{x}_{\mathrm{n}}\right)\right\}$, then $\left\{\mathrm{XS}\left(\mathrm{x}_{\mathrm{n}}\right)\right\}$ is a sequence in $\overline{\mathrm{B}_{\mathrm{d}_{1}}\left(\mathrm{x}_{0}, r\right)}$, $x_{n} \preceq x_{n+1}$ and $\left\{\mathrm{XS}\left(\mathrm{x}_{\mathrm{n}}\right)\right\} \rightarrow \mathrm{x}^{*} \in \overline{\mathrm{~B}_{\mathrm{d}_{1}}\left(\mathrm{x}_{0}, r\right)}$. Also if $\mathrm{x}^{*} \preceq \mathrm{x}_{\mathrm{n}}$ or $\mathrm{x}_{\mathrm{n}} \preceq \mathrm{x}^{*}$ for all $\mathrm{n} \in \mathbb{N} \cup\{0\}$ and inequality (2.6) holds for all $x, y \in\left(\overline{\bar{B}_{d_{l}}\left(x_{0}, r\right)} \cap\left\{X S\left(x_{n}\right)\right\}\right) \cup\left\{x^{*}\right\}$, then x^{*} is a fixed point of S in $\overline{\bar{B}_{d_{l}}\left(x_{0}, r\right)}$.

Let $f: X \longrightarrow X$ be a self-mapping of a set X and $\alpha: X \times X \rightarrow[0,+\infty)$ be a mapping, then the mapping f is called semi α-admissible if, $A \subseteq X, x, y \in A, \alpha(x, y) \geqslant 1$ implies $\alpha(f x, f y) \geqslant 1$. If $A=X$, then the mapping f is called α-admissible.

Corollary 2.3. Let $\left(\mathrm{X}, \mathrm{d}_{\mathrm{l}}\right)$ be a complete dislocated metric space and $\mathrm{S}: \mathrm{X} \rightarrow \mathrm{X}, \mathrm{r}>0$ and x_{0} be an arbitrary point in $\overline{\mathrm{B}_{\mathrm{d}_{l}}\left(\mathrm{x}_{0}, r\right)}$ and $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ be a Picard sequence in X with initial guess x_{0}. Let $\alpha: \mathrm{X} \times \mathrm{X} \rightarrow[0,+\infty)$ be a semi α-admissible mapping on $\overline{\mathrm{B}_{\mathrm{d}_{1}}\left(\mathrm{x}_{0}, \mathrm{r}\right)}$ with $\alpha\left(\mathrm{x}_{0}, \mathrm{x}_{1}\right) \geqslant 1$. For $\mathrm{a}, \mathrm{b} \in[0,1)$ with $\mathrm{a}+2 \mathrm{~b}<1$, assume that,

$$
\begin{equation*}
x, y \in \overline{B_{d_{l}}\left(x_{0}, r\right)}, \alpha(x, y) \geqslant 1, \text { implies } d_{l}(S x, S y) \leqslant \operatorname{ad}_{\mathfrak{l}}(x, y)+b\left[d_{l}(x, S x)+d_{l}(y, S y)\right] \tag{2.7}
\end{equation*}
$$

and

$$
d_{l}\left(x_{0}, S x_{0}\right) \leqslant(1-\lambda) r, \text { where } \lambda=\frac{a+b}{1-b} .
$$

Then $\left\{x_{n}\right\}$ is a sequence in $\overline{\bar{B}_{d_{l}}\left(x_{0}, r\right)}$ and $x_{n} \rightarrow x^{*} \in \overline{\bar{B}_{d_{l}}\left(x_{0}, r\right)}$ and $\alpha\left(x_{n}, x_{n+1}\right) \geqslant 1$ for all $n \in \mathbb{N} \cup\{0\}$. Also, if $\alpha\left(x_{n}, x^{*}\right) \geqslant 1$ for all $n \in \mathbb{N} \cup\{0\}$, and inequality (2.7) holds for all $x, y \in\left(\overline{\mathrm{~B}_{\mathrm{d}_{\imath}}\left(x_{0}, r\right)} \cap\left\{X S\left(x_{n}\right)\right\}\right) \cup\left\{x^{*}\right\}$, then x^{*} is a fixed point of S in $\overline{\mathrm{B}_{\mathrm{d}_{\mathrm{l}}}\left(x_{0}, r\right)}$.

Recall that if (X, \preceq) is a preordered set and $T: X \rightarrow X$ is such that for $x, y \in X$, with $x \preceq y$ implies $T x \preceq T y$, then the mapping T is said to be non-decreasing.
Corollary 2.4. Let $\left(\mathrm{X}, \mathrm{d}_{\mathrm{l}}\right)$ be a complete dislocatedmetric space, $\mathrm{S}: \mathrm{X} \rightarrow \mathrm{X}$ be nondecreasing maping, $\mathrm{r}>0$ and x_{0} be an arbitrary point in $\overline{\mathrm{B}_{\mathrm{d}_{\imath}}\left(\mathrm{x}_{0}, r\right)},\left\{\mathrm{x}_{\mathrm{n}}\right\}$ be a Picard sequence in X with initial guess x_{0} and $\mathrm{x}_{0} \preceq \mathrm{x}_{1}$. For $\mathrm{a}, \mathrm{b} \in[0,1)$ with $\mathrm{a}+2 \mathrm{~b}<1$ such that

$$
\begin{equation*}
d_{d_{l}}(S x, S y) \leqslant \operatorname{ad}_{l}(x, y)+b\left[d_{l}(x, S x)+d_{l}(y, S y)\right] \tag{2.8}
\end{equation*}
$$

for all x, y in $\overline{\mathrm{B}_{\mathrm{d}_{l}}\left(\mathrm{x}_{0}, r\right)} \cap\left\{\mathrm{XS}\left(\mathrm{x}_{\mathrm{n}}\right)\right\}$ with $\mathrm{x} \preceq \mathrm{y}$, and

$$
d_{l}\left(x_{0}, S x_{0}\right) \leqslant(1-\lambda) r \text {, where } \lambda=\frac{a+b}{1-b} .
$$

Then $\left\{x_{n}\right\}$ is a sequence in $\overline{\bar{B}_{d_{l}}\left(x_{0}, r\right)}, x_{n} \preceq x_{n+1}$ and $\left\{x_{n}\right\} \rightarrow x^{*} \in \overline{B_{d_{l}}\left(x_{0}, r\right)}$. Also if $x^{*} \preceq x_{n}$ or $x_{n} \preceq x^{*}$ for all $n \in \mathbb{N} \cup\{0\}$ and inequality (2.8) holds for all $x, y \in\left(\overline{\bar{B}_{d_{l}}\left(x_{0}, r\right)} \cap\left\{\operatorname{XS}\left(x_{n}\right)\right\}\right) \cup\left\{x^{*}\right\}$, then x^{*} is a fixed point of S in $\overline{\mathrm{B}_{\mathrm{d}_{l}}\left(\mathrm{x}_{0}, \mathrm{r}\right)}$.
Example 2.5. Let $X=R^{+} \cup\{0\}$ and let $d_{l}: X \times X \rightarrow X$ be the complete dislocated metric on X defined by,

$$
d_{l}(x, y)=x+y \text { for all } x, y \in X
$$

Define the multivalued mapping S: $\mathrm{X} \rightarrow \mathrm{P}(\mathrm{X})$ by

$$
S x= \begin{cases}{\left[\frac{2}{3} x, \frac{1}{2}\right],} & \text { if } x \in[0,1) \\ {[x, x+2],} & \text { if } x \in(1, \infty)\end{cases}
$$

Consider $x_{0}=1, r=21, a=\frac{1}{2}, b=\frac{1}{5}$, then $\lambda=\frac{7}{8}, \overline{B_{d_{l}}\left(x_{0}, r\right)}=[0,20]$ and $(1-\lambda) r=\frac{5}{2}>d_{l}\left(x_{0}, S x_{0}\right)=\frac{5}{3}$.
So we obtain a sequence $\left\{\operatorname{XS}\left(x_{n}\right)\right\}=\left\{1, \frac{2}{3}, \frac{4}{9}, \frac{8}{27}, \ldots\right\}$ in X generated by x_{0}. Define the mapping,

$$
\alpha(x, y)= \begin{cases}1, & \text { if } x, y \in[0,1] \\ \frac{3}{2}, & \text { otherwise }\end{cases}
$$

Now,

$$
\alpha_{*}(S 4, S 6) H_{d_{l}}(S 4, S 6)=\left(\frac{3}{2}\right) 12>\frac{1}{2} d_{l}(4,6)+\frac{1}{5}\left[d_{l}(4, S 4)+d_{l}(6, S 6)\right]=9
$$

So the contractive condition does not hold on X. Clearly, the contractive condition does not hold for all $x, y \in X$ and for all $x, y \in \overline{B_{d_{l}}\left(x_{0}, r\right)}$. Now for all $x, y \in \overline{B_{d_{l}}\left(x_{0}, r\right)} \cap\left\{X S\left(x_{n}\right)\right\}$, we have

$$
\begin{aligned}
\alpha_{*}(S x, S y) H_{d_{l}}(S x, S y) & =1\left[\max \left\{\sup _{a \in S x} d_{l}(a, S y), \sup _{b \in S y} d_{l}(S x, b)\right\}\right] \\
& =\max \left\{\sup _{a \in S x} d_{l}\left(a,\left[\frac{2 y}{3}, \frac{3 y}{4}\right]\right), \sup _{b \in S y} d_{l}\left(\left[\frac{2 x}{3}, \frac{3 x}{4}\right], b\right)\right\} \\
& =\max \left\{d_{l}\left(\frac{3 x}{4},\left[\frac{2 y}{3}, \frac{3 y}{4}\right]\right), d_{l}\left(\left[\frac{2 x}{3}, \frac{3 x}{4}\right], \frac{3 y}{4}\right)\right\} \\
& =\max \left\{d_{l}\left(\frac{3 x}{4}, \frac{2 y}{3}\right), d_{l}\left(\frac{2 x}{3}, \frac{3 y}{4}\right)\right\} \\
& \left.=\max \left\{\frac{3 x}{4}+\frac{2 y}{3}, \frac{2 x}{3}+\frac{3 y}{4}\right)\right\} \\
& \leqslant \frac{5}{6} x+\frac{5}{6} y=\frac{1}{2}(x+y)+\frac{1}{5}\left[x+\frac{2 x}{3}+y+\frac{2 y}{3}\right] \\
& =\frac{1}{2}(x+y)+\frac{1}{5}\left[d_{l}\left(x,\left[\frac{2 x}{3}, \frac{3 x}{4}\right]\right)+d_{l}\left(y,\left[\frac{2 y}{3}, \frac{3 y}{4}\right]\right)\right] \\
& =a d_{l}(x, y)+b\left[d_{l}(x, S x)+d_{l}(y, S y)\right]
\end{aligned}
$$

So the contractive condition holds on $\overline{\mathrm{B}_{\mathrm{d}_{l}}\left(\mathrm{x}_{0}, r\right)} \cap\left\{\mathrm{XS}\left(\mathrm{x}_{\mathrm{n}}\right)\right\}$. Hence all the conditions of Theorem 2.1 are satisfied. Now, we have $\left\{\operatorname{XS}\left(x_{n}\right)\right\}$ is a sequence in $\overline{B_{d_{l}}\left(x_{0}, r\right)}, \alpha\left(x_{n}, x_{n+1}\right) \geqslant 1$ and $\left\{X S\left(x_{n}\right)\right\} \longrightarrow 0 \in$ $\overline{\mathrm{B}_{\mathrm{d}_{l}}\left(x_{0}, r\right)}$. Also, $\alpha\left(x_{n}, 0\right) \geqslant 1$ or $\alpha\left(0, x_{n}\right) \geqslant 1$ for all $n \in \mathbb{N} \cup\{0\}$. Moreover, S has a fixed point 0 .

3. Fixed point results for graphic contractions

Consistent with Jachymski [16], let (X, d) be a metric space and Δ denotes the diagonal of the Cartesian product $X \times X$. Consider a directed graph G such that the set $V(G)$ of its vertices coincides with X, and the set $\mathrm{E}(\mathrm{G})$ of its edges contains all loops, i.e., $\mathrm{E}(\mathrm{G}) \supseteq \Delta$. We assume G has no parallel edges, so we can identify G with the pair $(V(G), E(G))$. Moreover, we may treat G as a weighted graph (see [16]) by assigning to each edge the distance between its vertices. If x and y are vertices in a graph G, then a path in G from x to y of length $N(N \in \mathbb{N})$ is a sequence $\left\{x_{i}\right\}_{i=0}^{N}$ of $N+1$ vertices such that $x_{0}=x, x_{N}=y$ and $\left(x_{n-1}, x_{n}\right) \in E(G)$ for $i=1, \ldots, N$. A graph G is connected if there is a path between any two vertices. G is weakly connected if \tilde{G} is connected (see for details $[10,11,16]$).
Definition 3.1 ([31]). Let X be a nonempty set and $G=(V(G), E(G))$ be a graph such that $V(G)=X$, and let $T: X \rightarrow C B(X)$. T is said to be graph preserving if it satisfies the following:

- if $(x, y) \in E(G)$, then $(u, v) \in E(G)$ for all $u \in T x$ and $v \in T y$.

In this section, we give fixed point results on a dislocated metric space endowed with a graph.

Theorem 3.2. Let $\left(X, d_{l}\right)$ be a complete dislocated metric space endowed with a graph $G, r>0, x_{0} \in \overline{B_{d_{l}}\left(x_{0}, r\right)}$, $S: X \rightarrow P(X)$ and $\left\{X S\left(x_{n}\right)\right\}$ be a sequence in X generated by x_{0} with $\left(x_{0}, x_{1}\right) \in E(G)$. Assume the following conditions hold:
(i) S is graph preserving for all $x, y \in \overline{\mathrm{~B}_{\mathrm{d}_{l}}\left(\mathrm{x}_{0}, r\right)}$,
(ii) there exist $\mathrm{a}, \mathrm{b} \in[0,1)$ with $\mathrm{a}+2 \mathrm{~b}<1$, such that

$$
\begin{equation*}
H_{d_{l}}(S x, S y) \leqslant a d_{l}(x, y)+b\left[d_{l}(x, S x)+d_{l}(y, S y)\right] \tag{3.1}
\end{equation*}
$$

for all $\mathrm{x}, \mathrm{y} \in \overline{\mathrm{B}_{\mathrm{d}_{\mathrm{l}}}\left(\mathrm{x}_{0}, \mathrm{r}\right)} \cap\left\{\mathrm{XS}\left(\mathrm{x}_{\mathrm{n}}\right)\right\}$ and $(\mathrm{x}, \mathrm{y}) \in \mathrm{E}(\mathrm{G})$,
(iii) there exists $x_{0} \in \overline{B_{d_{l}}\left(x_{0}, r\right)}$, such that $d_{l}\left(x_{0}, S x_{0}\right) \leqslant(1-\lambda) r$, where $\lambda=\frac{a+b}{1-b}$.

Then $\left\{\mathrm{XS}\left(\mathrm{x}_{\mathrm{n}}\right)\right\}$ is a sequence in $\overline{\mathrm{B}_{\mathrm{d}_{l}}\left(\mathrm{x}_{0}, r\right),}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right) \in \mathrm{E}(\mathrm{G})$ and $\left\{\mathrm{XS}\left(\mathrm{x}_{\mathrm{n}}\right)\right\} \rightarrow \mathrm{x}^{*}$. Also if $\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}^{*}\right) \in \mathrm{E}(\mathrm{G})$ or $\left(x^{*}, x_{n}\right) \in \mathrm{E}(\mathrm{G})$ for all $\mathrm{n} \in \mathbb{N} \cup\{0\}$ and inequality (3.1) holds for all $x, y \in\left(\overline{\mathrm{~B}_{\mathrm{d}_{l}}\left(\mathrm{x}_{0}, r\right)} \cap\left\{\mathrm{XS}\left(\mathrm{x}_{\mathrm{n}}\right)\right\}\right) \cup\left\{\mathrm{x}^{*}\right\}$, then x^{*} is a fixed point of S in $\overline{B_{d_{l}}\left(x_{0}, r\right)}$.
Proof. Define $\alpha: \mathrm{X} \times \mathrm{X} \rightarrow[0,+\infty)$ by

$$
\alpha(x, y)= \begin{cases}1, & \text { if }(x, y) \in E(G) \\ 0, & \text { otherwise }\end{cases}
$$

As $\left\{\operatorname{XS}\left(x_{n}\right)\right\}$ is a sequence in X generated by x_{0} with $\left(x_{0}, x_{1}\right) \in E(G)$, we have $\alpha\left(x_{0}, x_{1}\right) \geqslant 1$. Let, $\alpha(x, y) \geqslant 1$, then $(x, y) \in E(G)$. From (i), we have $(u, v) \in E(G)$ for all $u \in S x$ and $v \in S y$. This implies that $\alpha(u, v)=1$ for all $u \in S x$ and $v \in S y$. This further implies that $\inf \{\alpha(u, v): u \in S x, v \in S y\}=1$. Thus S is a semi α_{*}-admissible multifunction on $\overline{\mathrm{B}_{\mathrm{d}_{l}}\left(\mathrm{x}_{0}, r\right)}$. Also, if $(x, y) \in \mathrm{E}(\mathrm{G})$, we have $\alpha(x, y)=1$ and hence, $\alpha_{*}(S x, S y)=1$. Now, condition (ii) can be written as

$$
\alpha_{*}(S x, S y) H_{d_{l}}(S x, S y)=H_{d_{l}}(S x, S y) \leqslant \operatorname{ad}_{l}(x, y)+b\left[d_{l}(x, S x)+d_{l}(y, S y)\right]
$$

for all $x, y \in \overline{\mathrm{~B}_{d_{l}}\left(x_{0}, r\right)} \cap\left\{X S\left(x_{n}\right)\right\}$. By including condition (iii) we obtain all the conditions of Theorem 2.1 are satisfied. Now, by Theorem 2.1, we have $\left\{X S\left(x_{n}\right)\right\}$ is a sequence in $\overline{B_{d_{l}}\left(x_{0}, r\right)}, \alpha\left(x_{n}, x_{n+1}\right) \geqslant 1$, that is, $\left(x_{n}, x_{n+1}\right) \in E(G)$ and $\left\{X S\left(x_{n}\right)\right\} \rightarrow x^{*} \in \overline{B_{d_{l}}\left(x_{0}, r\right)}$. Also if $\left(x_{n}, x^{*}\right) \in E(G)$ or $\left(x^{*}, x_{n}\right) \in E(G)$ for all $n \in$ $\mathbb{N} \cup\{0\}$ and inequality (3.1) holds for all $x, y \in\left(\overline{\bar{B}_{d_{l}}\left(x_{0}, r\right)} \cap\left\{X S\left(x_{n}\right)\right\}\right) \cup\left\{x^{*}\right\}$, then, we have $\alpha\left(x_{n}, x^{*}\right) \geqslant 1$ or $\alpha\left(x^{*}, x_{n}\right) \geqslant 1$ for all $n \in \mathbb{N} \cup\{0\}$ and inequality (2.1) holds for all $x, y \in\left(\overline{\bar{B}_{d_{l}}\left(x_{0}, r\right)} \cap\left\{X S\left(x_{n}\right)\right\}\right) \cup\left\{x^{*}\right\}$. Again, by Theorem 2.1, S has a fixed point x^{*} in $\overline{\mathrm{B}_{\mathrm{d}_{l}}\left(x_{0}, r\right)}$.
Corollary 3.3. Let $\left(X, \mathrm{~d}_{\mathrm{l}}\right)$ be a complete dislocated metric space endowed with a graph $\mathrm{G}, \mathrm{r}>0, \mathrm{x}_{0} \in \overline{\mathrm{~B}_{\mathrm{d}_{\mathrm{l}}}\left(\mathrm{x}_{0}, r\right)}$, $S: X \rightarrow P(X)$ and $\left\{X S\left(x_{n}\right)\right\}$ be a sequence in X generated by x_{0} with $\left(x_{0}, x_{1}\right) \in E(G)$. Assume the following conditions hold:
(i) S is graph preserving for all $\mathrm{x}, \mathrm{y} \in \overline{\mathrm{B}_{\mathrm{d}_{\mathrm{l}}}\left(\mathrm{x}_{0}, r\right)}$;
(ii) there exists $b \in\left[0, \frac{1}{2}\right)$, such that

$$
\begin{equation*}
H_{d_{l}}(S x, S y) \leqslant b\left[d_{l}(x, S x)+d_{l}(y, S y)\right] \tag{3.2}
\end{equation*}
$$

for all $x, y \in \overline{B_{d_{l}}\left(x_{0}, r\right)} \cap\left\{X S\left(x_{n}\right)\right\}$ and $(x, y) \in E(G)$;
(iii) there exists $x_{0} \in \overline{B_{d_{l}}\left(x_{0}, r\right)}$, such that $d_{l}\left(x_{0}, S x_{0}\right) \leqslant(1-\lambda) r$, where $\lambda=\frac{b}{1-\mathrm{b}}$.

Then $\left\{\mathrm{XS}\left(\mathrm{x}_{\mathrm{n}}\right)\right\}$ is a sequence in $\overline{\mathrm{B}_{\mathrm{d}_{l}}\left(\mathrm{x}_{0}, r\right),}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right) \in \mathrm{E}(\mathrm{G})$ and $\left\{\mathrm{XS}\left(\mathrm{x}_{\mathrm{n}}\right)\right\} \rightarrow \mathrm{x}^{*}$. Also if $\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}^{*}\right) \in \mathrm{E}(\mathrm{G})$ or $\left(x^{*}, x_{n}\right) \in \mathrm{E}(\mathrm{G})$ for all $\mathrm{n} \in \mathbb{N} \cup\{0\}$ and inequality (3.2) holds for all $x, y \in\left(\overline{\mathrm{~B}_{\mathrm{d}_{l}}\left(\mathrm{x}_{0}, r\right)} \cap\left\{\mathrm{XS}\left(\mathrm{x}_{\mathrm{n}}\right)\right\}\right) \cup\left\{\mathrm{x}^{*}\right\}$, then x^{*} is a fixed point of S in $\overline{\bar{B}_{d_{l}}\left(x_{0}, r\right)}$.

Proof. In Theorem 3.2, take $a=0$ to get fixed point $x^{*} \in \overline{\mathrm{~B}\left(x_{0}, r\right)}$ such that $x^{*} \in S x^{*}$.
Corollary 3.4. Let $\left(X, d_{l}\right)$ be a complete dislocated metric space endowed with a graph $G, r>0, x_{0} \in \overline{\mathrm{~B}_{\mathrm{d}_{\mathrm{l}}}\left(\mathrm{x}_{0}, r\right)}$, $S: X \rightarrow P(X)$ and $\left\{X S\left(x_{n}\right)\right\}$ be a sequence in X generated by x_{0} with $\left(x_{0}, x_{1}\right) \in E(G)$. Assume the following conditions hold:
(i) S is graph preserving for all $\mathrm{x}, \mathrm{y} \in \overline{\mathrm{B}_{\mathrm{d}_{\mathrm{l}}}\left(\mathrm{x}_{0}, \mathrm{r}\right)}$,
(ii) there exists $a \in[0,1)$, such that

$$
\begin{equation*}
H_{d_{l}}(S x, S y) \leqslant \operatorname{ad}_{l}(x, y) \tag{3.3}
\end{equation*}
$$

for all $x, y \in \overline{\mathrm{~B}_{\mathrm{d}_{\mathrm{l}}}\left(\mathrm{x}_{0}, \mathrm{r}\right)} \cap\left\{\mathrm{XS}\left(\mathrm{x}_{\mathrm{n}}\right)\right\}$ and $(\mathrm{x}, \mathrm{y}) \in \mathrm{E}(\mathrm{G})$,
(iii) there exists $x_{0} \in \overline{\mathrm{~B}_{\mathrm{d}_{l}}\left(x_{0}, r\right)}$, such that $\mathrm{d}_{\mathrm{l}}\left(\mathrm{x}_{0}, S \mathrm{x}_{0}\right) \leqslant(1-\mathrm{a}) \mathrm{r}$.

Then $\left\{\mathrm{XS}\left(\mathrm{x}_{\mathrm{n}}\right)\right\}$ is a sequence in $\overline{\mathrm{B}_{\mathrm{d}_{l}}\left(\mathrm{x}_{0}, \mathrm{r}\right),}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right) \in \mathrm{E}(\mathrm{G})$ and $\left\{\mathrm{XS}\left(\mathrm{x}_{\mathrm{n}}\right)\right\} \rightarrow \mathrm{x}^{*}$. Also if $\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}^{*}\right) \in \mathrm{E}(\mathrm{G})$ or $\left(x^{*}, x_{n}\right) \in \mathrm{E}(\mathrm{G})$ for all $\mathrm{n} \in \mathbb{N} \cup\{0\}$ and inequality (3.3) holds for all $\mathrm{x}, \mathrm{y} \in\left(\overline{\mathrm{B}_{\mathrm{d}_{l}}\left(\mathrm{x}_{0}, r\right)} \cap\left\{\mathrm{XS}\left(\mathrm{x}_{\mathrm{n}}\right)\right\}\right) \cup\left\{\mathrm{x}^{*}\right\}$, then x^{*} is a fixed point of S in $\overline{\mathrm{B}_{\mathrm{d}_{\mathrm{l}}}\left(x_{0}, r\right)}$.

Proof. In Theorem 3.2, take $b=0$ to get fixed point $x^{*} \in \overline{B\left(x_{0}, r\right)}$ such that $x^{*} \in S x^{*}$.
Remark 3.5. We can obtain the metric version of all the theorems which are still not presented in the literature.

Acknowledgment

The authors sincerely thank the learned referee for a careful reading and thoughtful comments. The present version of the paper owes much to the precise and kind remarks of anonymous referees.

References

[1] M. U. Ali, T. Kamran, On $\left(\alpha^{*}, \psi\right)$-contractive multi-valued mappings, Fixed Point Theory Appl., 2013 (2013), 7 pages. 1
[2] A Amini-Harandi, Metric-like spaces, partial metric spaces and fixed points, Fixed Point Theory Appl., 2012 (2012), 10 pages. 1
[3] M. Arshad, A. Azam, M. Abbas, A. Shoaib, Fixed points results of dominated mappings on a closed ball in ordered partial metric spaces without continuity, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 76 (2014), 123-134. 1
[4] M. Arshad, A. Shoaib, M. Abbas, A. Azam, Fixed points of a pair of Kannan type mappings on a closed ball in ordered partial metric spaces, Miskolc Math. Notes, 14 (2013), 769-784.
[5] M. Arshad, A. Shoaib, I. Beg, Fixed point of a pair of contractive dominated mappings on a closed ball in an ordered dislocated metric space, Fixed Point Theory Appl., 2013 (2013), 15 pages. 1, 1.1, 1.2, 1.3
[6] M. Arshad, A. Shoaib, P. Vetro, Common fixed points of a pair of Hardy Rogers type mappings on a closed ball in ordered dislocated metric spaces, J. Funct. Spaces Appl., 2013 (2013), 9 pages. 1
[7] J. H. Asl, S. Rezapour, N. Shahzad, On fixed points of $\alpha-\psi$-contractive multifunctions, Fixed Point Theory Appl., 2012 (2012), 6 pages. 1
[8] A. Azam, M. Arshad, Fixed points of a sequence of locally contractive multivalued maps, Comput. Math. Appl., 57 (2009), 96-100. 1
[9] A. Azam, N. Mehmood, J. Ahmad, S. Radenović, Multivalued fixed point theorems in cone b-metric spaces, J. Inequal. Appl., 2013 (2013), 9 pages. 1
[10] F. Bojor, Fixed point theorems for Reich type contractions on metric spaces with a graph, Nonlinear Anal., 75 (2012), 3895-3901. 3
[11] R. Espínola, W. A. Kirk, Fixed point theorems in \mathbb{R}-trees with applications to graph theory, Topology Appl., 153 (2006), 1046-1055. 3
[12] P. Hitzler, A. K. Seda, Dislocated topologies, J. Electr. Eng., 51 (2000), 3-7. 1
[13] N. Hussain, J. Ahmad, A. Azam, Generalized fixed point theorems for multi-valued α - $\boldsymbol{\psi}$-contractive mappings, J. Inequal. Appl., 2014 (2014), 15 pages. 1
[14] N. Hussain, M. Arshad, A. Shoaib, Fahimuddin, Common fixed point results for $\alpha-\psi$-contractions on a metric space endowed with graph, J. Inequal. Appl., 2014 (2014), 14 pages. 1
[15] N. Hussain, P. Salimi, A. Latif, Fixed point results for single and set-valued $\alpha-\eta-\psi$-contractive mappings, Fixed Point Theory Appl., 2013 (2013), 23 pages. 1
[16] J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc. Amer. Math. Soc., 136 (2008), 1359-1373. 3
[17] E. Karapınar, P. Salimi, Dislocated metric space to metric spaces with some fixed point theorems, Fixed Point Theory Appl., 2013 (2013), 19 pages. 1, 1.1
[18] M. A. Kutbi, M. Arshad, A. Hussain, On modified $(\alpha-\eta)$-contractive mappings, Abstr. Appl. Anal., 2014 (2014), 7 pages. 1
[19] S. G. Matthews, Partial metric topology, Papers on general topology and applications, Flushing, NY, (1992), Ann. New York Acad. Sci., New York Acad. Sci., New York, 728 (1994), 183-197. 1
[20] S. B. Nadler, Jr., Multi-valued contraction mappings, Pacific J. Math., 30 (1969), 475-488. 1
[21] M. Nazam, M. Arshad, On a fixed point theorem with application to integral equations, Int. J. Anal., 2016 (2016), 7 pages. 1
[22] M. Nazam, M. Arshad, M. Abbas, Some fixed point results for dualistic rational contractions, Appl. Gen. Topol., 17 (2016), 199-209. 1
[23] M. Nazam, M. Arshad, C. Park, Fixed point theorems for improved α-Geraghty contractions in partial metric spaces, J. Nonlinear Sci. Appl., 9 (2016), 4436-4449. 1
[24] S. Reich, Some remarks concerning contraction mappings, Canad. Math. Bull., 14 (1971), 121-124. 1
[25] Y.-J. Ren, J.-L. Li, Y.-R. Yu, Common fixed point theorems for nonlinear contractive mappings in dislocated metric spaces, Abstr. Appl. Anal., 2013 (2013), 5 pages. 1
[26] B. Samet, M. Rajović, R. Lazović, R. Stojiljković, Common fixed-point results for nonlinear contractions in ordered partial metric spaces, Fixed Point Theory Appl., 2011 (2011), 14 pages. 1
[27] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for $\alpha \psi$-contractive type mappings, Nonlinear Anal., 75 (2012), 2154-2165. 1
[28] A. Shoaib, M. Arshad, J. Ahmad, Fixed point results of locally contractive mappings in ordered quasi-partial metric spaces, Scientific World J., 2013 (2013), 8 pages. 1
[29] A. Shoaib, M. Arshad, A. Azam, Fixed points of a pair of locally contractive mappings in ordered partial metric spaces, Mat. Vesnik, 67 (2015), 26-38.
[30] A. Shoaib, M. Arshad, M. A. Kutbi, Common fixed points of a pair of Hardy Rogers type mappings on a closed ball in ordered partial metric spaces, J. Comput. Anal. Appl., 17 (2014), 255-264. 1
[31] J. Tiammee, S. Suantai, Coincidence point theorems for graph-preserving multi-valued mappings, Fixed Point Theory Appl., 2014 (2014), 11 pages. 3.1

[^0]: *Corresponding author
 Email addresses: abdullahshoaib15@yahoo.com (Abdullah Shoaib), akbarazam@yahoo.com (Akbar Azam), marshadzia@iiu.edu.pk (Muhammad Arshad), eskandarameer@yahoo.com (Eskandar Ameer)
 doi:10.22436/jmcs.017.02.13

