On a Pseudo Projective ϕ – Recurrent Sasakian Manifolds

A. Singh1,*, R. Kumar Pandey1,*, A. Prakash2, S. Khare$^{1,\times}$

1Department of Mathematics, B.B.D. University, Lucknow-226004, Uttar Pradesh, India
*abhi.rmlau@gmail.com
*$^drstkpandey65@rediffmail.com$
$^\times$sachinuptu1@gmail.com

2Department of Mathematics, N.I.T., Kurukshetra -136119, Haryana, India.
amitmath@nitkkr.ac.in

Article history:
Received June 2014
Accepted November 2014
Available online January 2015

Abstract
The object of the present paper is to study the pseudo projective ϕ – recurrent Sasakian manifolds.

Keywords: Pseudo projective ϕ – symmetric manifold, pseudo projective ϕ – recurrent manifold, Einstein manifold.

1. Introduction
The notion of local symmetry of a Riemannian manifold has been studied by many authors in several ways to a different extent. As a weaker version of local symmetry, in 1977, Takahashi [9] introduced the notion of locally ϕ – symmetric Sasakian manifold and obtained their several interesting results. The properties of pseudo projective curvature tensor is studied by many geometers [17], [18], [19], [22] and obtained their some interesting results.

In this paper we shown that pseudo projective ϕ – recurrent Sasakian manifold is an Einstein manifold and in a pseudo projective ϕ – recurrent Sasakian manifold, the characteristic vector field ξ and the vector field ρ associated to the 1 – form A are co-directional. Finally, we proved that a three dimensional locally pseudo – projective ϕ – recurrent Sasakian manifold is of constant curvature.

2. Preliminaries
Let $M^{2n+1}(\phi, \xi, \eta, g)$ be an almost contact Riemannian manifold, where ϕ is a $(1,1)$ tensor field, ξ is the structure vector field, η is a 1 – form and g is the Riemannian metric. It is well known that the structure (ϕ, ξ, η, g) satisfy

$$\phi^2 X = -X + \eta(X)\xi,$$

(a) $\eta(\xi) = 1,$ (b) $g(X, \xi) = \eta(X),$ (c) $\eta(\phi X) = 0,$ (d) $\phi \xi = 0,$

$$\phi^2 X = -X + \eta(X)\xi,$$

(a) $\eta(\xi) = 1,$ (b) $g(X, \xi) = \eta(X),$ (c) $\eta(\phi X) = 0,$ (d) $\phi \xi = 0,$

309
\[g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y), \]
\[(\nabla_X \phi)(Y) = g(X, Y)\xi - \eta(Y)X, \]
\[\nabla_X \xi = -\phi X, \]
\[(\nabla_X \eta)(Y) = g(X, \phi Y), \]

for all vector fields \(X, Y, Z\), where \(\nabla\) denotes the operator of covariant differentiation with respect to \(g\), then \(M^{2n+1}(\phi, \xi, \eta, g)\) is called a Sasakian manifold [1].

Sasakian manifolds have been studied by many authors such as De, Shaikh and Biswas [3], Takahashi [9], Tanno [15] and many others.

In a Sasakian manifold the following relations hold: [1]

\[\eta(R(X, Y)Z) = g(Y, Z)\eta(X) - g(X, Z)\eta(Y) \]
\[R(X, Y)\xi = \eta(Y)X - \eta(X)Y, \]
\[S(X, \xi) = 2n\eta(X), \]
\[S(\phi X, \phi Y) = S(X, Y) - 2n\eta(X)\eta(Y), \]

for all vector fields \(X, Y, Z\), where \(S\) is the Ricci tensor of type \((0,2)\) and \(R\) is the Riemannian curvature tensor of the manifold.

A Sasakian manifold is said to be an Einstein manifold if the Ricci tensor \(S\) is of the form

\[S(X, Y) = \lambda g(X, Y), \]

where \(\lambda\) is a constant.

Definition 2.1. A Sasakian manifold is said to be a locally \(\phi -\) symmetric manifold if [9]

\[\phi^2((\nabla_W R)(X, Y)Z) = 0, \]
for all vector fields \(X, Y, Z, W\) orthogonal to \(\xi\).

Definition 2.2. A Sasakian manifold is said to be a locally pseudo projective \(\phi -\) symmetric manifold if

\[\phi^2((\nabla_W \tilde{P})(X, Y)Z) = 0, \]
for all vector fields \(X, Y, Z, W\) orthogonal to \(\xi\).

Definition 2.3. A Sasakian manifold is said to be pseudo projective \(\phi -\) recurrent Sasakian manifold if there exists a non-zero 1-form \(A\) such that

\[\phi^2((\nabla_W \tilde{P})(X, Y)Z) = A(W)\tilde{P}(X, Y)Z, \]
for arbitrary vector fields \(X, Y, Z, W\), where \(\tilde{P}\) is a pseudo projective curvature tensor given by [17]

\[\tilde{P}(X, Y)Z = \frac{r}{2^n+1} \left[\frac{\alpha}{2^n} + b \right] [g(Y, Z)X - g(X, Z)Y]. \]

where \(a\) and \(b\) are constants such that \(a, b \neq 0\). If \(a = 1\) and \(b = -\frac{1}{2^n}\) Then (14) takes of the form

\[\tilde{P}(X, Y)Z = R(X, Y)Z - \frac{1}{2^n} [S(Y, Z)X - S(X, Z)Y] = P(X, Y)Z. \]

where \(P\) is the projective curvature tensor [21]. Hence the Projective curvature \(P\) is a particular case of the tensor \(\tilde{P}\). For the reason \(\tilde{P}\) is called Pseudo projective curvature tensor, where \(R\) is the Riemann curvature tensor \(S\) is Ricci tensor and \(r\) is the scalar curvature.

If the 1-form \(A\) vanishes, then the manifold reduces to a locally pseudo projective \(\phi -\) symmetric manifold.
3. Pseudo projective ϕ – recurrent Sasakian manifold

In this section we consider a Sasakian manifold which is pseudo projective ϕ – recurrent Sasakian manifold. Then by virtue of (1) and (3), we get

$$-(\nabla_W \tilde{P}) (X,Y)Z + \eta \left((\nabla_w \tilde{P}) (X,Y)Z \right) \xi = A(W) \tilde{P}(X,Y)Z,$$

from which it follows that

$$-g \left((\nabla_W \tilde{P}) (X,Y)Z, U \right) + \eta \left((\nabla_w \tilde{P}) (X,Y)Z \right) \eta (U) = A(W) g(\tilde{P}(X,Y)Z, U).$$

Let $\{e_i\}, i = 1, 2, \ldots, 2n + 1$ be an orthonormal basis of the tangent space at any point of the manifold. Then putting $X = U = e_i$ in (16) and taking summation over $i, 1 \leq i \leq 2n + 1$, we get

$$(\nabla_W S)(Y,Z) = A(W) \left[S(Y,Z) - \left(\frac{r}{2n+1} \right) g(Y,Z) \right].$$

Replacing Z by ξ in (17) and using (2) and (9), we get

$$(\nabla_W S)(Y,\xi) = A(W) \left[2n - \left(\frac{r}{2n+1} \right) \right] \eta(Y).$$

Now we have

$$(\nabla_W S)(Y,\xi) = \nabla_W S(Y,\xi) - S(\nabla_W Y, \xi) - S(Y, \nabla_W \xi),$$

using (5), (6) and (9) in the above relation, it follows that

$$(\nabla_W S)(Y,\xi) = 2ng(\phi Y, W) + S(Y, \phi W).$$

In view of (18) and (19), we get

$$S(Y, \phi W) = -2ng(\phi Y, W) + A(W) \left[2n - \left(\frac{r}{2n+1} \right) \right] \eta(Y).$$

Replacing Y by ϕY and using (3), (4) and (10) in (20), we get

$$S(Y, W) = 2ng(Y, W).$$

for all Y, W.

Hence, we can state the following theorem:

Theorem 3.1 A pseudo projective ϕ – recurrent Sasakian manifold (M^{2n+1}, g) is an Einstein manifold.

Now from (15), we have

$$(\nabla_W \tilde{P})(X,Y)Z = \eta \left((\nabla_w \tilde{P}) (X,Y)Z \right) \xi - A(W) \tilde{P}(X,Y)Z.$$

Using (14) in (22), we get

$$a(\nabla_W R)(X,Y)Z = a\eta \left((\nabla_w R)(X,Y)Z \right) \xi - aA(W)R(X,Y)Z$$

$$+ b \left[(\nabla_W S)(Y,Z) \eta(X) - (\nabla_W S)(X,Z) \eta(Y) \right] \xi$$

$$- b \left[(\nabla_W S)(Y,Z)X - (\nabla_W S)(X,Z)Y \right]$$

$$- bA(W)[S(Y,Z)X - S(X,Z)Y]$$

$$+ \left(\frac{r}{2n+1} \right) \left[\frac{a}{2n} + b \right] A(W) [g(Y,Z)X - g(X,Z)Y].$$

From (23) and the Bianchi identity, we get

$$aA(W) \eta(R(X,Y)Z) + aA(X) \eta(R(Y,W)Z) + aA(Y) \eta(R(W,X)Z)$$

$$= bA(W)[S(X,Z) \eta(Y) - S(Y,Z) \eta(X)]$$

$$- \left(\frac{r}{2n+1} \right) \left[\frac{a}{2n} + b \right] A(W) [g(Y,Z) \eta(Y) - g(Y,Z) \eta(X)]$$

$$+ bA(X)[S(Y,Z) \eta(W) - S(W,Z) \eta(Y)]$$

$$- \left(\frac{r}{2n+1} \right) \left[\frac{a}{2n} + b \right] A(X) [g(Y,Z) \eta(W) - g(W,Z) \eta(Y)]$$

$$+ bA(Y)[S(W,Z) \eta(X) - S(X,Z) \eta(W)]$$

$$- \left(\frac{r}{2n+1} \right) \left[\frac{a}{2n} + b \right] A(Y) [g(W,Z) \eta(X) - g(X,Z) \eta(W)].$$

By virtue of (8), we obtain from (24) that
\[aA(W)[g(Y, Z)\eta(X) - g(X, Z)\eta(Y)] + aA(X)[g(W, Z)\eta(Y) - g(Y, Z)\eta(W)] + aA(Y)[g(X, Z)\eta(W) - g(W, Z)\eta(X)] \\
= bA(W)[S(X, Z)\eta(Y) - S(Y, Z)\eta(X)] \\
- \left(\frac{r}{2n+1} \right) \left[\frac{a}{2n} + b \right] A(W)[g(X, Z)\eta(Y) - g(Y, Z)\eta(X)] \\
+ bA(X)[S(Y, Z)\eta(W) - S(W, Z)\eta(Y)] \\
- \left(\frac{r}{2n+1} \right) \left[\frac{a}{2n} + b \right] A(X)[g(Y, Z)\eta(W) - g(W, Z)\eta(Y)] \\
+ bA(Y)[S(W, Z)\eta(X) - S(X, Z)\eta(W)] \\
- \left(\frac{r}{2n+1} \right) \left[\frac{a}{2n} + b \right] A(Y)[g(W, Z)\eta(X) - g(X, Z)\eta(W)] \\
\]

(25)

Putting \(Y = Z = e_1 \) in (25) and taking summation over \(i, 1 \leq i \leq 2n + 1 \) we get

\[A(W)\eta(X) = A(X)\eta(W), \]

(26)

for all vector fields \(X, W \). Replacing \(X \) by \(\xi \) in (26), we get

\[A(W) = \eta(W)\eta(\rho), \]

(27)

for any vector field \(W \), where \(A(\xi) = g(\xi, \rho) = \eta(\rho) \), \(\rho \) being the vector field associated to the \(1 \) - form \(X \) i.e., \(A(X) = g(X, \rho) \). From (27),

we can state the following theorem:

Theorem 3.2 In a Pseudo projective \(\phi \) - Sasakian manifold \((M^{2n+1}, g)(n \geq 1) \), the characteristic vector field \(\xi \) and the vector field \(\rho \) associated to the \(1 \) - form \(A \) are co-directional and the \(1 \) - form \(A \) is given by (27).

4. **On a 3 - dimensional Locally Pseudo Projective \(\phi \) - Recurrent Sasakian Manifold**

On a 3 - dimensional Sasakian Manifold Ricci tensor and curvature tensor has the following form

\[S(X, Y) = \left(\frac{r}{2} - 1 \right) g(X, Y) - \left(\frac{r}{2} - 3 \right) \eta(X)\eta(Y) \]

(28)

\[R(X, Y)Z = \left(\frac{r-4}{2} \right) [g(Y, Z)X - g(X, Z)Y] \\
- \left(\frac{r-6}{2} \right) [g(Y, Z)\eta(X)\xi - g(X, Z)\eta(Y)\xi + \eta(Y)\eta(Z)X - \eta(X)\eta(Z)Y] \]

(29)

Taking covariant differentiation of (29), we get

\[(\nabla_W R)(X, Y)Z = \frac{dr(W)}{2} [g(Y, Z)X - g(X, Z)Y - g(Y, Z)\eta(X)\xi \\
+ g(X, Z)\eta(Y)\xi - \eta(Y)\eta(Z)X + \eta(X)\eta(Z)Y] \\
- \left(\frac{r-6}{2} \right) [g(Y, Z)(\nabla_W \eta)(X)\xi + g(Y, Z)\eta(X)(\nabla_W \xi) \\
- g(X, Z)(\nabla_W \eta)(Y)\xi + g(X, Z)\eta(Y)(\nabla_W \xi)] \\
+ (\nabla_W \eta)(Y)\eta(Z)X + (\nabla_W \eta)(Z)\eta(Y)X \\
- (\nabla_W \eta)(X)\eta(Z)Y - (\nabla_W \eta)(Z)\eta(X)Y. \]

(30)

Taking \(X, Y, Z, W \) orthogonal to \(\xi \) and using (5) and (6), we get

\[(\nabla_W R)(X, Y)Z = \frac{dr(W)}{2} [g(Y, Z)X - g(X, Z)Y] \\
- \left(\frac{r-6}{2} \right) [g(Y, Z)g(X, \phi W) - g(X, Z)g(Y, \phi W)]\xi \]

(31)

from (31) it follows that
\[
\phi^2(\nabla_W R)(X,Y)Z = \frac{dr(W)}{2} [g(Y,Z)\phi^2 X - g(X,Z)\phi^2 Y]
\] (32)

Now, taking \(X, Y, Z, W\) orthogonal to \(\xi\) and using (1) and (2) in (32), we get

\[
\phi^2(\nabla_W R)(X,Y)Z = -\frac{dr(W)}{2} [g(Y,Z)X - g(X,Z)Y]
\] (33)

Differentiating covariantly (14) with respect to \(W\) (for \(n = 1\), we get

\[
(\nabla_W \bar{\nabla})(X,Y)Z = a(\nabla_W R)(X,Y)Z + b(\nabla_W S)(Y,Z)X - (\nabla_W S)(X,Z)Y
\]

\[-\frac{dr(W)}{3} [a + b] g(Y,Z)X - g(X,Z)Y].
\] (34)

Using (28) in (34) and then taking \(X, Y, Z, W\) orthogonal to \(\xi\), we get

\[
(\nabla_W \bar{\nabla})(X,Y)Z = a(\nabla_W R)(X,Y)Z - \frac{dr(W)}{6} [a - b] g(Y,Z)X - g(X,Z)Y.
\] (35)

Now, applying \(\phi^2\) to the both side of (35), we get

\[
\phi^2(\nabla_W \bar{\nabla})(X,Y)Z = a\phi^2(\nabla_W R)(X,Y)Z - [a - b] \frac{dr(W)}{6} [g(Y,Z)\phi^2 X - g(X,Z)\phi^2 Y].
\] (36)

Using (13), (33), (1) in (36), we obtain

\[
A(W)\bar{\nabla}(X,Y)Z = -a \frac{dr(W)}{2} [g(Y,Z)X - g(X,Z)Y]
\]

\[+ [a - b] \frac{dr(W)}{6} [g(Y,Z)X - g(X,Z)Y + g(X,Z)\eta(Y)\xi - g(Y,Z)\eta(X)\xi].
\] (37)

taking \(X, Y, Z\) orthogonal to \(W\), we get

\[
\bar{\nabla}(X,Y)Z = -\frac{(2a+b)dr(W)}{6A(W)} [g(Y,Z)X - g(X,Z)Y]
\] (38)

Putting \(W = \{e_i\}\) in (38), where \(\{e_i\}, i = 1,2,3\) is an orthonormal basis of the tangent space at any point of the manifold and taking summation over \(i\), \(1 \leq i \leq 3\), we obtain

\[
\bar{\nabla}(X,Y)Z = \lambda [g(Y,Z)X - g(X,Z)Y].
\]

where \(\lambda = \left[-\frac{(2a+b)dr(e_i)}{6A(e_i)}\right]\) is a scalar, since \(A\) is a non-zero \(1\) - form. Then, by Schur’s theorem \(\lambda\) will be a constant on the manifold. Hence, we can state the following theorem:

Theorem 4.1 On a 3 - dimensional locally Pseudo-projective \(\phi\) - recurrent Sasakian manifold, pseudo-projective curvature tensor is of the form of constant curvature.

Acknowledgements. The authors are thankful to Professor S. Ahmad Ali Dean School of Applied Sciences, B.B.D. University, Lucknow, providing suggestions for the improvement of this paper.

References

