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Abstract

In this paper, Differential Transformation Method (DTM) is applied on governing equations of heat and fluid flow for
a nanofluid over a horizontal flat plate. After obtaining the governing equations and solving them by DTM, the accuracy of
results is examined by fourth order Runge-kutta numerical method. Due to infinite boundary condition for the stretching plate,
outcomes need to an improvement method to be converged. For this aim, Padé approximation is applied on the obtained results
which [10,10] Padé order had the best accuracy compared to numerical method. The influence of relevant parameters such
as the transpiration parameter on temperature and nanoparticle concentration profile is discussed and it is concluded that by
increasing this parameter, nanoparticles concentration over the plate decrease due to more fluid penetration from pores and this
is the main reason of lower thermal boundary layer caused by fewer nanoparticles over the plate. c©2017 All rights reserved.
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1. Introduction

Nowadays, nanofluids are the most important topics for the researchers due to their high application
in industry and technology for facility of many phenomena such as heat transfer [1–5]. Based on Aziz
[6] study, Dogonchi et al. [7], Domairry and Aziz [8] and Domairry and Hatami [9] applied the math-
ematical methods for solving the mechanical engineering problems such as nanoparticles or particles
motion modeling. Ellahi et al. [10] in a mathematical modeling, investigated the shape effect of nanosize
Cu particles on the entropy generation. Also, Ellahi et al. [12] in another study analyzed the shape ef-
fect of nanoparticles suspended in HFE-7100. Mathematical modeling is widely used by the researchers
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[13, 14, 16–36] in the last years due to its simplicity, high accuracy and applicability in a wide range of
engineering problems such as mechanical engineering, electrical engineering, chemical engineering, etc.
Rana et al. [37] investigated the flow and heat transfer of a nanofluid over a nonlinearly stretching sheet
by numerical solution. After that, Rashidi et al. [38–42] considered the nanofluid flow over a stretching
porous plate and analyzed it by analytical and mathematical methods. Shaoqin and Huoyuan [15] used
the mathematical least square method for incompressible magneto-hydrodynamic equation while Ellahi
et al. [11] analyzed the mixed convection over a permeable wedge mathematically. Collocation is another
mathematical technique for problem modeling which is used by Stern and Rasmussen [43] for their mod-
eling. The nanofluid slip flow within circular concentric pipes has been theoretically investigated in the
presence of thermal conditions of either constant heat flux at the outer wall and the inner wall insulated
or vice versa by Turkyilmazoglu [44, 45]. Turkyilmazoglu [44] solved momentum and energy equations of
nanofluids analytically to deduce the flow and heat transport phenomena in two theoretical cases, single
phase and multi-phase. When the nanoparticles are uniformly distributed across the condensate bound-
ary layer called it single phase and when the concentration of nanoparticles through the film is allowed
to vary from the wall to the outer edge of the condensate film in the light of modified Buongiorno ′s
nanofluid model named multi-phase. Zeeshan et al. [46] analyzed the effect of magnetic dipole on vis-
cous ferro-fluid past a stretching surface with thermal radiation and show the effects of magnetic field on
the particles treatment.

Comparison of the single and two-phase modeling for the nanofluids has been considered by the
researchers. For instance, Haghshenas Fard et al. [21] compared the results of the single phase and two-
phase numerical methods for nanofluids in a circular tube. They reported that for Cu-water the average
relative error between experimental data and CFD results based on single-phase model was 16% while
for two-phase model was 8%. In another numerical study, Göktepe et al. [20] compared these two models
for nanofluid convection at the entrance of a uniformly heated tube which found the same results and
confirm the accuracy of two-phase modeling. Mohyud-Din et al. [34] in an analytical study, considered
the three dimensional heat and mass transfer with magnetic effects for the flow of a nanofluid between
two parallel plates in a rotating system. As one of their main outcomes, thermophoresis and Brownian
motion parameters are directly related to heat transfer but are inversely related to concentration profile.
Also they found that the higher Coriolis forces decrease the temperature boundary layer thickness. Three-
dimensional flow of nanofluids under the radiation (due to solar or etc.) has been analyzed by Hayat et
al. [31] and Khan et al. [32]. They also computed and examined the effects of different parameters on the
velocity, temperature, skin friction coefficient and Nusselt number of nanofluid flow.

Nomenclature

αm thermal diffusivity qm wall mass flux
a constant qw wall heat flux
n stretching parameter DB Brownian diffusion confident
C nanoparticle volume fraction DT thermophoretic diffusion coefficient
Nt thermophoresis parameter uw velocity of stretching sheet
Cw nanoparticle volume fraction f(η) dimensionless stream function
C∞ ambient nanoparticle volume fraction g(η) gravitational acceleration
Nb Brownian motion parameter Le Lewis number
(x,y) Cartesian coordinates Nux Nusselt number
Tw temperature at the plate Shx Sherwood number
T∞ ambient temperature attained u, v velocity components along x− y axes
T Temperature on the plate fw Transpiration
Pr Prandtl number
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The aim of the present paper is to extend the work by Rashidi et al. [40] to the case where the plate
is permeable for nanofluids over a cylindrical tube and thermal analysis by DTM- Padé approximation
method as powerful analytical method. DTM-Padé is the combination of DTM or differential transfor-
mation method as a powerful mathematical method and Padé approximation technique. In recent years,
the DTM-Padé has been successfully employed to solve many types of nonlinear problems such as MHD
flow in a laminar liquid film [42], nano boundary-layers over stretching surfaces [39], heat transfer in a
second-grade fluid through a porous medium [41] and off-centered stagnation flow toward a rotating disc
[13].
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Figure 1: Nanofluid stretching sheet flow physical regime.

2. Mathematical formulation

In this article, we examine steady, incompressible, laminar, boundary layer flow of a nanofluid past
a permeable stretching sheet. The simultaneous application of two equal and opposite forces along the
x-axis induces flow generation as a result of non-linear stretching of the sheet. The sheet is extended with
a velocity uw = axn with the origin location fixed, where the power-law index, n is a nonlinear stretching
parameter, a is a constant and x is the coordinate orientated parallel to the stretching surface. Lateral mass
flux i.e. wall transpiration is present. The model studied is depicted in Figure 1. This physical regime is
of importance in modern nano-technological fabrication and thermal materials processing as elaborated
by Krajnik et al. [33]. It is important to note that the constant temperature and concentration of the
stretching surface Tw and Cw are assumed to be greater than the ambient temperature and concentration
T∞ and C∞. The wall conditions are therefore isothermal. Recently, Rana and Bhargava [37] are defined
Neglecting buoyancy forces, edge effects, pressure gradient presence and the conservation equations i.e.
mass, momentum, energy and nano-particle species conservation equations, following may be presented
as

∂u

∂x
+
∂v

∂y
= 0, (2.1)
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u
∂u

∂x
+ v

∂u

∂y
= v

∂2u

∂y2 , (2.2)

u
∂T

∂x
+ v

∂T

∂y
= αm52 T + τ

[
DB

∂C

∂y
· ∂T
∂y

+ (DT/T∞)

(
∂T

∂y

)2]
, (2.3)

u
∂C

∂x
+ v

∂C

∂y
= DB

∂2C

∂y2 + (DT/T∞)
∂2T

∂y2 , (2.4)

where u and v are the velocity components along the x and y axis, ν is the nanofluid kinematic viscosity,
αm = km/(ρc)f is the nanofluid thermal diffusivity, τ = (ρc)p/(ρc)f is the ratio between the effective heat
capacity of the nanoparticles and heat capacity of the base fluid, ρp is the density of the nano-particles, ρf
is the density of the base fluid,DB is the Brownian diffusion coefficient,DT is the thermophoretic diffusion
coefficient and c is the volumetric volume expansion coefficient. The following boundary conditions are
prescribed

at y = 0 : v = vw(x), uw = axn, T = Tw, C = Cw,
as y→∞ : u = v = 0, T = T∞, C = C∞,

(2.5)

where vw(x) is the variable velocity components in vertical direction at the stretching surface in which
vw(x) < 0 represents to the suction cases and vw(x) > 0 represents to the injection ones. The wall
transverse velocity condition in (2.5) differs from that in Rana and Bhargava [37] since wall transpiration
is now included. Introducing similarity transformations

η = y

√
a(n+ 1)

2v
x
n−1

2 , u = axnf ′(η),

v = −

√
av(n+ 1)

2
x
n−1

2

(
f+
(n− 1
n+ 1

)
ηf ′

)
,

θ(η) =
T − T∞
Tw − T∞ ,φ(η) =

C−C∞
Cw −C∞ .

Introduction of these transformations into the governing equations (2.1), (2.2), (2.3), (2.4) yields the
reduced form of the conservation equations for momentum, energy (heat) and species (nano-particle)
concentration

f
′′′
+ ff

′′
−
( 2n
n+ 1

)
f
′2 = 0, (2.6)

1
pr
θ ′′ + fθ ′ +Nbθ ′φ ′ +Nt(θ ′)2 = 0, (2.7)

φ ′′ +
1
2
Lefφ ′ +

Nt

Nb
θ ′′ = 0. (2.8)

The transformed boundary conditions become

η = 0 : f = fw, f ′ = 1, θ = 1, φ = 1, (2.9)
η→∞ : f ′ = 1, θ = 0, φ = 0, (2.10)

where Pr = ν/α is the Prandtl number, Nb = (ρc)p ×DB(Cw − C∞)/(ρc)fν is the Brownian motion
parameter, Nt = (ρc)pDT (Tw − T∞)/(ρc)fνT∞ is the thermophoresis parameter, Le = ν/DB is the Lewis
number and fw = −vw(x)/(

√
aν(n+ 1)/2x

n−1
2 ) is the wall transpiration parameter (suction/injection).

We now march on to find the solution of the boundary value problem (2.6), (2.7), (2.8), (2.9), (2.10)
analytically by using DTM-Padé.
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3. Analytical approximations by means of the DTM-Padé

By taking the one-dimensional differential transform, from Table 1 to each term of (2.6), (2.7), (2.8),
the following transforms are obtained

f ′′′ → (k+ 1)(k+ 2)(k+ 3)F(k+ 3), (3.1)

ff ′′ →
k∑
r=0

(k− r+ 1)(k− r+ 2)F(r)F(k− r+ 2), (3.2)

f ′2 →
k∑
r=0

(r+ 1)F(r+ 1)(k− r+ 1)F(k− r+ 1), (3.3)

θ ′′ → (k+ 1)(k+ 2)Θ(k+ 2), (3.4)

fθ ′ →
k∑
r=0

F(r)(k− r+ 1)Θ(k− r+ 1), (3.5)

θ ′2 →
k∑
r=0

(r+ 1)Θ(r+ 1)(k− r+ 1)Θ(k− r+ 1), (3.6)

θ ′φ ′ →
k∑
r=0

(r+ 1)Θ(r+ 1)(k− r+ 1)Φ(k− r+ 1), (3.7)

φ ′′ → (k+ 1)(k+ 2)Φ(k+ 2), (3.8)

fφ ′ →
k∑
r=0

F(r)(k− r+ 1)Φ(k− r+ 1). (3.9)

where F(k), Θ(k), and Φ(k) are the transformed functions of f(k), θ(k), and φ(k) respectively and are
given by

f(η) =

∞∑
k=0

F(k)ηk, (3.10)

θ(η) =

∞∑
k=0

Θ(k)ηk, (3.11)

φ(η) =

∞∑
k=0

Φ(k)ηk. (3.12)

Table 1: The operations for the one-dimensional differential transform method
Original function Transformed function
w(x) = u(x)± v(x) W(k) = U(k)± V(k)
w(x) = λu(x) W(k) = λU(k), λ is a constant
w(x) =

du(x)
dx W(k) = (k+ 1)U(k+ 1)

w(x) =
dru(x)
dxr W(k) = (k+ 1)(k+ 2) . . . (k+ r)U(k+ r)

w(x) = u(x)v(x) W(k) =
∑k
r=0U(r)v(k− r)

w(x) =
du(x)
dx

dv(x)
dx W(k) =

∑k
r=0(r+ 1)(k− r+ 1)U(r+ 1)V(k− r+ 1)

w(x) = u(x)
dv(x)
dx W(k) =

∑k
r=0(k− r+ 1)U(r)V(k− r+ 1)

w(x) = u(x)
d2u(x)
dx2 W(k) =

∑k
r=0(k− r+ 2)(k− r+ 1)U(r)V(k− r+ 2)
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By substituting (3.1), (3.2), (3.3), (3.4), (3.5), (3.6), (3.7), (3.8), (3.9) into (2.6), (2.7), (2.8) and by using
boundary conditions equations (2.9) and (2.10) we have

(k+ 1)(k+ 2)(k+ 3)F(k+ 3) +
k∑
r=0

F(r)(k− r+ 2)(k− r+ 1)F(k− r+ 2)

−
2n
n+ 1

k∑
r=0

(r+ 1)F(r+ 1)(k− r+ 1)F(k− r+ 1) = 0,

(3.13)

1
Pr

(k+ 1)(k+ 2)Θ(k+ 2) +
k∑
r=0

F(r)(k− r+ 1)Θ(k− r+ 1)

+Nb

k∑
r=0

(r+ 1)Θ(r+ 1)(k− r+ 1)Φ(k− r+ 1)

+Nt

k∑
r=0

(r+ 1)Θ(r+ 1)(k− r+ 1)Θ(k− r+ 1) = 0,

(3.14)

(k+ 1)(k+ 2)Φ(k+ 2) +
1
2
Le

k∑
r=0

F(r)(k− r+ 1)Φ(k− r+ 1)

Nt

Nb
(k+ 1)(k+ 2)Θ(k+ 2),

(3.15)

F(0) = fw, F(1) = 1, F(2) = α, (3.16)
Θ(0) = 1, Θ(1) = β, (3.17)
Φ(0) = 1, Φ(1) = γ. (3.18)

Moreover, by substituting (3.16), (3.17), (3.18) into (3.13), (3.14), (3.15) and by a recursive method we can
calculate the values of F(k),Θ(k), and Φ(k).

Hence, by substituting all F(k),Θ(k), and Φ(k) into (3.10), (3.11), (3.12), we have the series solutions as
below

f(η) ∼= fw + η+αη2 +
1
6
( 2n
n+ 1

− 2αfw
)
η3 +

1
24

(
−2α− fw

( 2n
n+ 1

− 2αfw
)
+

8αn
n+ 1

)
η4

+ . . . ,
(3.19)

θ(η) ∼= 1 +βη+
1
2
Pr
(
−βfw −βγNb+β2 −Nt

)
η2 +

1
6
Pr

(
−β− fwPrA− 3βNtPrA
−γNbPrA− 1

2NbβfwLeγ

)
η3

+ . . . ,
(3.20)

φ(η) ∼= 1 + γη+
1
2
(
−1

2γfwLe−
NtPrA
Nb

)
η2 +

1
6


−1

2Le
(
fw

(
−ANtPrNb − γfwLe

2

)
+ γ
)

−βNtPr
(
−ANtPrNb − γfwLe

2

)
+AγNtPr2

1
NbNtPr (−β−AfwPr− 2AβNtPr)

η3

+ . . . ,

(3.21)

where A =
(
−βfw −βγNb−Ntβ2

)
.

Best way to enlarge the convergence radius of the truncated series solution is the Padé approximant
where converting the polynomial approximation into a ratio of two polynomials. Without using the Padé
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approximant, the analytical solution obtained by the DTM, cannot satisfy boundary conditions at infinity.
It is therefore essential to combine the series solution, obtained by the DTM with the Padé approximant
to provide an effective tool to handle boundary value problems in infinite domains. Hence apply the
Padé approximation to (3.19) and (3.21) and by using asymptotic boundary conditions equations (2.9)
and (2.10) at η = ∞, we can obtain α,β, and γ.

4. Result and discussion

As described in the main aim of this study, the main purpose of current paper is to introduce the DTM
as an analytical method for the solution of heat and mass transfer of nanofluid over a stretching plate.
Figure 2 demonstrates the accuracy of DTM compared to numerical method.

Table 2: Comparison between the results of DTM-Padé [10,10] and numerical solution, when fw = 0,Nt = Nb = 0.5,Pr = 1,n =
1.5 and Le = 2.

f ′(η) θ(η) φ(η)
η DTM-Padé[10,10] Numerical DTM-Padé[10,10] Numerical DTM-Padé[10,10] Numerical

0.0 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
0.5 0.592838 0.592838 0.798988 0.798988 0.843667 0.843667
1.0 0.355768 0.355769 0.600981 0.600981 0.710694 0.710694
1.5 0.215166 0.215169 0.430405 0.430405 0.588966 0.588966
2.0 0.130746 0.130749 0.296400 0.296400 0.475138 0.475138
2.5 0.079650 0.079655 0.197860 0.197860 0.371684 0.371683
3.0 0.048566 0.048572 0.128858 0.128859 0.281979 0.281976
3.5 0.029595 0.029602 0.082282 0.082281 0.207844 0.207828
4.0 0.017992 0.017999 0.051697 0.051687 0.149150 0.149089

As seen in this figure as well as Figures 3, 4, 5 which are depicted for f(η), f ′(η), θ(η) and φ(η), DTM is
not a very reliable method for the solution of these kind of the problems which have an infinite boundary
condition. As seen in these figures DTM results cannot be converged in infinite and suddenly reaches to

Table 3: Comparison between the results of numerical, DTM-Padé solution and previously published studies [37] and [40], when
fw = 0,Le = Pr = n = 2 and Nb = Nt = 0.5.

f ′(η)

η FEM FDM HAM Numerical DTM-Padé
0.0 1.0000 1.0000 1.00000000 1.00000000 1.00000000
1.0 0.3479 0.3459 0.34838179 0.34838043 0.34838006
2.0 0.1270 0.1210 0.12812649 0.12812328 0.12812251
3.0 0.0464 0.0460 0.04815841 0.04815345 0.04815226
4.0 0.0161 0.0160 0.01825518 0.01824889 0.01824752

θ(η)

η FEM FDM HAM Numerical DTM-Padé
0.0 1.0000 1.0000 1.00000000 1.00000000 1.00000000
1.0 0.5016 0.4916 0.47170963 0.47169779 0.47540763
2.0 0.1417 0.1410 0.13847506 0.13845954 0.13991973
3.0 0.0271 0.0270 0.02894668 0.02894410 0.02878420
4.0 0.0043 0.0041 0.00495102 0.00494991 0.00494640

infinite or zero for different profiles. To solve this problem and have accurate results, it is recommended
to apply the Padé approximation on the obtained results. Table 2 and Table 3 compares the results of
DTM- Padé with the previous numerical and analytical methods presented in the literature. An excellent
agreement between these methods can be found in comparison in these tables. So, this order of approx-
imation is used in the following for finding the effect of constant numbers or parameters on the profiles.
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The effect of transpiration parameter (for suction and injection conditions) is presented in Figures 6, 7
and 8 for f ′(η), θ(η) and φ(η), respectively when Nt = Nb = 0.5,Pr = 1 and n = 1.5,Le = 2. Increasing
this parameter makes a decrease in all described graphs due to more injection or suction the fluid. As
seen, by increasing this parameter, nanoparticles concentration over the plate will decrease due to more
fluid penetration from pores and this is the main reason of lower thermal boundary layer caused by fewer
nanoparticles over the plate. Figures 9, 10 and 11 show the influence of sheet stretching parameter on the
flow boundary layer, thermal boundary layer and nanoparticles volume fraction concentration. Increase
of this parameter can increase the thermal and nanoparticles concentration profile thicknesses while it
reduces the flow boundary layer as shown in Figure 9. When the Prandtl number reaches to higher val-
ues, thermal boundary thickness reduces due to more heat transfer between the plate and nanofluid as
shown in Figure 12. For nanoparticles motion/heat transfer analysis, Brownian motion parameter and
thermophoresis parameter have a significant effect on the nanoparticles concentration and thermal bound-
ary layer as presented in Figures 13, 14, 15 and 16. When Brownian motion parameter increases, thermal
boundary layer increases while the nanoparticles concentration decreases. Thermophoresis parameter has
the same effect on the thermal boundary layer while a diverse effect on the nanoparticles concentration is
observed (Figures 15,16). Finally the effect of Lewis number on the thermal and nanoparticles concentra-
tion profiles is depicted by Figure 17 and Figure 18, respectively. These figures also confirms that higher
Lewis numbers have thinner profiles for both thermal boundary layer and nanoparticles concentration.
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Figure 2: f(η) by the DTM and the DTM-Padé [10,10] and
comparison with the numerical solution.
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Figure 3: f ′(η) by the DTM and the DTM-Padé [10,10]
and comparison with the numerical solution.
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Figure 4: θ(η) by the DTM and the DTM-Padé [10,10]
and comparison with the numerical solution.
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Figure 5: φ(η) by the DTM and the DTM-Padé [10,10] and
comparison with the numerical solution.
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Figure 6: Transpiration (suction/injection) parameter ef-
fect on velocity distribution when Nt = Nb = 0.5,Pr = 1
and n = 1.5,Le = 2.
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Figure 7: Transpiration (suction/injection) parameter ef-
fect on temperature distribution, when Nt = Nb =
0.5,Pr = 1 and n = 1.5,Le = 2.
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Figure 8: Transpiration (suction/injection) parameter ef-
fect on nano-particle concentration distribution, when
Nt = Nb = 0.5,Pr = 1 and n = 1.5,Le = 2.
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Figure 9: Effect of sheet stretching parameter on velocity
distribution, when fw = 0,Nt = Nb = 0.5,Pr = 1 and
Le = 2.
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Figure 10: Effect of sheet stretching parameter on temper-
ature distribution, when fw = 0,Nt = Nb = 0.5,Pr = 1
and Le = 2.
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Figure 11: Effect of sheet stretching parameter on nano-
particle concentration distribution, when fw = 0,Nt =
Nb = 0.5,Pr = 1 and Le = 2.
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Figure 12: Effect of Prandtl number on temperature dis-
tribution when fw = 0,Nt = 0.5,Nb = 1, n = 1.5 and
Le = 2.
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Figure 13: Effect of Brownian motion parameter on tem-
perature distribution when fw = 0,Nt = Pr = 1,n = 1.5
and Le = 2.
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Figure 14: Effect of Brownian motion parameter on nano-
particle concentration distribution when fw = 0,Nt =
Pr = 1,n = 1.5 and Le = 2.
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Figure 15: Effect of thermophoresis parameter on tem-
perature distribution when fw = 0,Nb = 1,n = 1.5 and
Pr = Le = 2.
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Figure 16: Effect of thermophoresis parameter on nano-
particle concentration distribution when fw = 0,Nb =
1,n = 1.5 and Pr = Le = 2.
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Figure 17: Effect of Lewis number on temperature distri-
bution when fw = 0,n = 0.5 and Pr = Nb = Nt = 1.
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Figure 18: Effect of Lewis number on nano-particle concentration distribution when fw = 0,n = 0.5
and Pr = Nb = Nt = 1.

5. Conclusion

In this paper, Differential Transformation Method (DTM) with fourth order Runge-Kutta numerical
method have been successfully applied to find the solution of two-phase modeling of heat transfer bound-
ary layer for nanofluids flow over a stretching plate. Due to nonlinearity of governing equations and
containing the infinite boundary conditions Padé approximation is applied to solve the problem in higher
accuracy. It is found that Padé [10,10] order is the most accurate order of solution. Also, it is tried to find
the relation of Prandtl number (Pr), Lewis number (Le) and other parameters such as suction/injection
parameter on the thermal boundary layer and nanoparticles volume fraction (φ) profile.
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