Available online at www.isr-publications.com/jmcs J. Math. Computer Sci. 16 (2016), 516–528 Research Article

Online: ISSN 2008-949x



**Journal of Mathematics and Computer Science** 



Journal Homepage: www.tjmcs.com - www.isr-publications.com/jmcs

# Fixed and common fixed point theorems in partially ordered quasi-metric spaces

Wasfi Shatanawi<sup>a,b</sup>, Mohd Salmi MD Noorani<sup>c</sup>, Habes Alsamir<sup>c,\*</sup>, Anwar Bataihah<sup>d</sup>

<sup>a</sup>Department of Mathematics and general courses, Prince Sultan University, Riyadh, Saudi Arabia.

<sup>b</sup>Department of Mathematics, Hashemite University, Zarqa, Jordan.

<sup>c</sup>School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan, Malaysia, 43600 UKM, Selangor.

<sup>d</sup>Department of Mathematics, Faculty of Science, Irbid National University, Irbid, Jordan.

# Abstract

In this paper, we prove some new fixed and common fixed point results in the framework of partially ordered quasi-metric spaces under linear and nonlinear contractions. Also we obtain some fixed point results in the framework of G-metric spaces. ©2016 All rights reserved.

*Keywords:* Quasi metric, common fixed point theorem, nonlinear contraction, altering distance function, G-metric spaces. 2010 MSC: 54H25, 47H10.

# 1. Introduction and preliminaries

The fixed point theory is considered as a basic and very simple mathematical setting, since it has some applications in many interesting fields such as differential equations, economics and engineering. The existence of a fixed point is a pivotal property of a function. Many necessary or sufficient conditions for the presence of such points are considered in many areas in mathematics.

The Banach contraction theorem [4] is considered as a fundamental theorem concerning fixed point theorem in a complete metric space which is appeared in 1922 and rise for its elegant and simple proof which it is known later as *Banach contraction principle*. Subsequently, a large number

<sup>\*</sup>Corresponding author

Email addresses: wshatanawi@psu.edu.sa (Wasfi Shatanawi), msn@ukm.my (Mohd Salmi MD Noorani),

h.alsamer@gmail.com (Habes Alsamir), anwerbataihah@gmail.com (Anwar Bataihah)

of generalizations of Banach contraction principle were obtained, for example in 2008, Agarwal et al. [1] introduced and proved the following theorem.

**Theorem 1.1** ([1, Theorem 2.3]). Let  $(X, d, \preceq)$  be a partially ordered complete metric space. Assume  $\psi : [0, +\infty) \rightarrow [0, +\infty)$  is a non-decreasing function with  $\psi(t) < t$  for each t > 0. Moreover, suppose that f is a nondecreasing mapping satisfying the following form

 $d(f(x), f(y)) \le \psi(\max\{fd(x, y), d(x, f(x)), d(y, f(y))\})$ 

for all  $x \ge y$ . Also assume either f is continuous or if  $(x_n) \subseteq X$  is a nondecreasing sequence with  $x_n \to x$  in X, then  $x_n \le x$  for all n holds. If there exists an  $x_0 \in X$  with  $x_0 \le f(x_0)$  then f has a fixed point.

The concept of quasi-metric spaces was generated by Wilson [19] in 1931 as the following:

**Definition 1.2.** Let X be a non empty set and  $d: X \times X \to [0, \infty)$  be a given function which satisfies

(1) d(x, y) = 0 iff x = y;

(2)  $d(x,y) \le d(x,z) + d(z,y)$  for any points  $x, y, z \in X$ .

Then d is called a quasi metric on X and the pair (X, d) is called a quasi metric space.

It is clear that every metric space is a quasi metric space, but the reverse is not necessarily true. Jleli and Samet [5] and Samet et al. [16] utilized the notion of quasi-metric space to obtain some fixed point theorems. In their interesting papers, they pointed out that some fixed point results in *G*-metric space in sense of Mustafa and Sims [14] can be obtained from quasi-metric space. Agarwal et. al [2] showed that many fixed point theorems in *G*-metric spaces can be derived from known existing results if all arguments are not distinct. For some results in *G*-metric space, we refer the reader to [7–18].

The convergence and completeness in a quasi-metric space are defined as follows:

**Definition 1.3** ([5]). Let (X, d) be a quasi-metric space,  $(x_n)$  be a sequence in X, and  $x \in X$ . Then the sequence  $(x_n)$  converges to x if and only if  $\lim_{n \to \infty} d(x_n, x) = \lim_{n \to \infty} d(x, x_n) = 0$ .

**Definition 1.4** ([5]). Let (X, d) be a quasi-metric space and  $(x_n)$  be a sequence in X. We say that the sequence  $(x_n)$  is left-Cauchy if for every  $\epsilon > 0$  there is positive integer  $N = N(\epsilon)$  such that  $d(x_n, x_m) \leq \epsilon$  for all  $n \geq m > N$ .

**Definition 1.5** ([5]). Let (X, d) be a quasi-metric space and  $(x_n)$  be a sequence in X. We say that the sequence  $(x_n)$  is right-Cauchy if for every  $\epsilon > 0$  there is a positive integer  $N = N(\epsilon)$  such that  $d(x_n, x_m) \leq \epsilon$  for all  $m \geq n > N$ .

**Definition 1.6** ([5]). Let (X, d) be a quasi-metric space and  $(x_n)$  be a sequence in X. We say that the sequence  $(x_n)$  is Cauchy if for every  $\epsilon > 0$  there is positive integer  $N = N(\epsilon)$  such that  $d(x_n, x_m) \leq \epsilon$  for all m, n > N.

**Definition 1.7** ([5]). Let (X, d) be a quasi-metric space. We say that

- (1) (X, d) is left-complete if and only if every left-Cauchy sequence in X is convergent;
- (2) (X, d) is right-complete if and only if every right-Cauchy sequence in X is convergent;
- (3) (X, d) is complete if and only if every Cauchy sequence in X is convergent.

Mustafa and Sims [14] introduced the notion of *G*-metric spaces as follows:

**Definition 1.8** ([14]). Let X be a nonempty set and let  $G : X \times X \times X \to [0, \infty)$  be a function satisfying:

- (G1) G(x, y, z) = 0 if x = y = z,
- (G2) G(x, x, y) > 0 for all  $x, y \in X$ , with  $x \neq y$ ,
- (G3)  $G(x, y, y) \leq G(x, y, z)$  for all  $x, y, z \in X$ , with  $y \neq z$ ,
- (G4)  $G(x, y, z) = G(p\{x, y, z\})$ , where  $p\{x, y, z\}$  is the all possible permutations of  $\{x, y, z\}$  (symmetry),
- (G5)  $G(x, y, z) \leq G(x, a, a) + G(a, y, z) \ \forall x, y, z, a \in X$  (rectangle inequality).

Then the function G is called a *generalized metric*, or more specifically a G-metric on X, and the pair (X, G) is called a G-metric space.

**Definition 1.9** ([14]). Let (X, G) be a G-metric space and let  $(x_n)$  be a sequence of points of X. Then we say that  $(x_n)$  is G-convergent to x if  $\lim_{n,m\to\infty} G(x, x_n, x_m) = 0$ ; that is, for any  $\epsilon > 0$ , there exists  $k \in \mathbb{N}$  such that  $G(x, x_n, x_m) < \epsilon$ , for all  $n, m \ge k$ .

**Proposition 1.10** ([14]). Let (X, G) be a G-metric space. Then the following assertions are equivalent

- (1)  $(x_n)$  is G-convergent to x;
- (2)  $G(x_n, x_n, x) \to 0 \text{ as } n \to \infty;$
- (3)  $G(x_n, x, x) \to 0 \text{ as } n \to \infty.$

**Definition 1.11** ([14]). Let (X, G) be a G-metric space. A sequence  $(x_n)$  in X is said to be G-Cauchy if for every  $\epsilon > 0$ , there exists  $k \in \mathbb{N}$  such that

$$G(x_n, x_m, x_l) < \epsilon, \ \forall n, m, l \ge k.$$

**Proposition 1.12** ([14]). In a G-metric space, the following are equivalent

- (1) the sequence  $(x_n)$  is G-Cauchy;
- (2) for every  $\epsilon > 0$ , there exists  $k \in \mathbb{N}$  such that  $G(x_n, x_m, x_m) < \epsilon$  for all  $n, m \ge k$ .

**Definition 1.13** ([14]). A G-metric space (X, G) is said to be G-complete or complete G-metric space if every G-Cauchy sequence in (X, G) is G-convergent in (X, G).

The following theorem is a relation between G-metric spaces and quasi metric spaces.

**Theorem 1.14** ([5]). Let (X,G) be a G-metric space and let  $d : X \times X \to [0,\infty)$  defined by d(x,y) = G(x,y,y). Then

- (1) (X, d) is a quasi metric space;
- (2)  $(x_n) \subset X$  is G-convergent to  $x \in X$  iff  $(x_n)$  is convergent in (X, d);
- (3)  $(x_n) \subset X$  is G-Cauchy iff  $(x_n)$  is Cauchy in (X, d);
- (4)  $(x_n) \subset X$  is G-complete iff  $(x_n)$  is complete in (X, d).

#### 2. Main result

We start with the following definitions.

**Definition 2.1** ([3]). Let  $(X, \preceq)$  be a partially ordered set. Two mappings  $F, G : X \to X$  are said to be weakly increasing if  $Fx \preceq GFx$  and  $Gx \preceq FGx$ , for all  $x \in X$ .

**Definition 2.2** ([18]). Let  $(X, \preceq)$  be a partially ordered set and A, B be closed subsets of X with  $X = A \cup B$ . Let  $f, g: X \to X$  be two mappings. Then the pair (f, g) is said to be (A, B)-weakly increasing if  $fx \preceq gfx$  for all  $x \in A$  and  $gx \preceq fgx$  for all  $x \in B$ .

**Definition 2.3** ([6]). The function  $\phi : [0, \infty) \to [0, \infty)$  is called an altering distance function if the following properties are satisfied.

- (1)  $\phi$  is continuous and nondecreasing.
- (2)  $\phi(t) = 0$  if and only if t = 0.

Our main result in this section is the following theorem.

**Theorem 2.4.** Let  $(X, \preceq)$  be a partially ordered set and suppose that (X,d) is a complete quasimetric space. Let A, B be two nonempty closed subsets of X with respect to the topology induced by dwith  $X = A \cup B$  and  $A \cap B \neq \phi$ . Let  $f, g : A \cup B \rightarrow A \cup B$  such that the pair (f,g) is (A,B)-weakly increasing with  $f(A) \subseteq B, g(B) \subseteq A$ . Let  $\phi, \psi$  be altering distance functions. Moreover, suppose that

$$\phi d(fx, gy) \le \phi \max\{d(x, y), d(fx, x), d(gy, y)\} - \psi \max\{d(x, y), d(fx, x), d(gy, y)\}$$
(2.1)

for all comparative  $x, y \in X$  with  $x \in A, y \in B$ , and

$$\phi d(gx, fy) \le \phi \max\{d(x, y), d(gx, x), d(fy, y)\} - \psi \max\{d(x, y), d(gx, x), d(fy, y)\}$$
(2.2)

for all comparative  $x, y \in X$  with  $x \in B, y \in A$ . Also,

- 1. suppose that there exists  $x_0 \in A$  such that  $x_0 \preceq f x_0$ ,
- 2. if f or g is continuous.

Then f and g have a common fixed point in  $A \cap B$ .

Proof. From 1. there exists  $x_0 \in A$  such that  $x_0 \preceq fx_0$ . Since  $f(A) \subseteq B$ , then  $x_1 = fx_0 \in B$ . Also, since  $g(B) \subseteq A$ , then  $x_2 = gx_1 \in B$ . By continuing this way, we construct a sequence  $(x_n)$  in X such that  $fx_{2n} = x_{2n+1}$ ,  $x_{2n} \in A$ ,  $gx_{2n+1} = x_{2n+2}$  and  $x_{2n+1} \in B$ ,  $n \in \mathbb{N} \cup \{0\}$ . Since (f,g) is (A, B)-weakly increasing, then  $x_0 \preceq fx_0 = x_1 \preceq gfx_0 = gx_1 = x_2 \preceq fgx_1 = fx_2 = x_3 \cdots$ . Thus  $x_n \preceq x_{n+1}$  for all  $n \ge 0$ . If there exists some  $k \in \mathbb{N}$  such that  $x_{2k} = x_{2k+1}$ , then  $x_{2k}$  is also a fixed point for g it is equivalent to show that  $x_{2k} = x_{2k+1} = x_{2k+2}$ . Since  $x_{2k} \preceq x_{2k+1}$ , then by (2.2) we have

$$\phi d(x_{2k+2}, x_{2k+1}) = \phi d(gx_{2k+1}, fx_{2k})$$

$$\leq \phi \max\{d(x_{2k+1}, x_{2k}), d(x_{2k+2}, x_{2k+1}), d(x_{2k+1}, x_{2k})\}$$

$$-\psi \max\{d(x_{2k+1}, x_{2k}), d(x_{2k+2}, x_{2k+1}), d(x_{2k+1}, x_{2k})\}$$

$$\leq \phi d(x_{2k+2}, x_{2k+1}) - \psi d(x_{2k+2}, x_{2k+1}).$$

Therefore,  $\psi d(x_{2k+2}, x_{2k+1}) = 0$ , and so  $d(x_{2k+2}, x_{2k+1}) = 0$ . Hence  $x_{2k+2} = x_{2k+1}$ . Thus  $x_{2k}$  is a common fixed point for f and g in  $A \cap B$ .

Now, assume that  $x_n \neq x_{n+1}$  for all  $n \ge 0$ . Let  $n \in \mathbb{N}$ . If n is even, then n = 2t for some  $t \in \mathbb{N}$ . By (2.1), we have

$$\begin{aligned} \phi d(x_{n+1}, x_n) &= \phi d(x_{2t+1}, x_{2t}) = \phi d(fx_{2t}, gx_{2t-1}) \\ &\leq \phi \max\{d(x_{2t}, x_{2t-1}), d(x_{2t+1}, x_{2t}), d(x_{2t}, x_{2t-1})\} \\ &- \psi \max\{d(x_{2t}, x_{2t-1}), d(x_{2t+1}, x_{2t}), d(x_{2t}, x_{2t-1})\} \\ &\leq \phi \max\{d(x_{2t+1}, x_{2t}), d(x_{2t}, x_{2t-1})\} \\ &- \psi \max\{d(x_{2t+1}, x_{2t}), d(x_{2t}, x_{2t-1})\}.\end{aligned}$$

If  $\max\{d(x_{2t+1}, x_{2t}), d(x_{2t}, x_{2t-1})\} = d(x_{2t+1}, x_{2t})$ , then

$$\phi d(x_{2t+1}, x_{2t}) \le \phi d(x_{2t+1}, x_{2t}) - \psi d(x_{2t+1}, x_{2t}).$$

Therefore,  $\psi d(x_{2t+1}, x_{2t}) = 0$  and so  $d(x_{2t+1}, x_{2t}) = 0$ . Thus  $x_{2t+1} = x_{2t}$  is a contradiction. Hence  $\max\{d(x_{2t+1}, x_{2t}), d(x_{2t}, x_{2t-1})\} = d(x_{2t}, x_{2t-1})$ . Therefore

$$d(x_{n+1}, x_n) \le d(x_n, x_{n-1}) \tag{2.3}$$

and

$$\phi d(x_{n+1}, x_n) \le \phi d(x_n, x_{n-1}) - \psi d(x_n, x_{n-1}).$$
(2.4)

If n is odd, then n = 2t + 1 for some  $t \in \mathbb{N}$ . By (2.2), we have

$$\begin{aligned} \phi d(x_{n+1}, x_n) &= \phi d(x_{2t+2}, x_{2t+1}) = \phi d(gx_{2t+1}, fx_{2t}) \\ &\leq \phi \max\{d(x_{2t+1}, x_{2t}), d(x_{2t+2}, x_{2t+1}), d(x_{2t+1}, x_{2t})\} \\ &- \psi \max\{d(x_{2t+1}, x_{2t}), d(x_{2t+2}, x_{2t+1}), d(x_{2t+1}, x_{2t})\} \\ &\leq \phi \max\{d(x_{2t+1}, x_{2t}), d(x_{2t+2}, x_{2t+1})\} \\ &- \psi \max\{d(x_{2t+1}, x_{2t}), d(x_{2t+2}, x_{2t+1})\}. \end{aligned}$$

If  $\max\{d(x_{2t+1}, x_{2t}), d(x_{2t+2}, x_{2t+1})\} = d(x_{2t+2}, x_{2t+1})$ , then  $\phi d(x_{2t+2}, x_{2t+1}) \leq \phi d(x_{2t+2}, x_{2t+1}) - \psi d(x_{2t+2}, x_{2t+1})$ . Therefore,  $\psi d(x_{2t+2}, x_{2t+1}) = 0$ , and so  $d(x_{2t+2}, x_{2t+1}) = 0$ . Thus  $x_{2t+2} = x_{2t+1}$  is a contradiction. Hence  $\max\{d(x_{2t+1}, x_{2t}), d(x_{2t+2}, x_{2t+1})\} = d(x_{2t+1}, x_{2t})$ . Therefore,

$$d(x_{n+1}, x_n) \le d(x_n, x_{n-1}) \tag{2.5}$$

and

$$\phi d(x_{n+1}, x_n) \le \phi d(x_n, x_{n-1}) - \psi d(x_n, x_{n-1}).$$
(2.6)

From (2.3) and (2.5), we have for all  $n \in \mathbb{N}$ 

$$d(x_{n+1}, x_n) \le d(x_n, x_{n-1}). \tag{2.7}$$

Thus  $(d(x_{n+1}, x_n) : n \in \mathbb{N})$  is a nonnegative decreasing sequence, so there exists  $r \ge 0$  such that  $\lim_{n \to \infty} d(x_{n+1}, x_n) = r$ . Also, from (2.4) and (2.6), we have for all  $n \in \mathbb{N}$ 

$$\phi d(x_{n+1}, x_n) \le \phi d(x_n, x_{n-1}) - \psi d(x_n, x_{n-1}).$$
(2.8)

By taking the limit as  $n \to \infty$  in (2.8), we get  $\phi r \le \phi r - \psi r$  which implies that  $\psi r = 0$ . Therefore, r = 0. Thus

$$\lim_{n \to \infty} d(x_{n+1}, x_n) = 0.$$
 (2.9)

Again, let  $n \in \mathbb{N}$ . If n is even, then n = 2t for some  $t \in \mathbb{N}$ . By (2.2), we have

$$\begin{aligned} \phi d(x_n, x_{n+1}) &= \phi d(x_{2t}, x_{2t+1}) = \phi d(gx_{2t-1}, fx_{2t}) \\ &\leq \phi \max\{d(x_{2t-1}, x_{2t}), d(x_{2t}, x_{2t-1}), d(x_{2t+1}, x_{2t})\} \\ &- \psi \max\{d(x_{2t-1}, x_{2t}), d(x_{2t}, x_{2t-1}), d(x_{2t+1}, x_{2t})\}. \end{aligned}$$

From (2.7), we have  $d(x_{2t}, x_{2t-1}) > d(x_{2t+1}, x_{2t})$ . Thus

$$\phi d(x_{2t}, x_{2t+1}) \leq \phi \max\{d(x_{2t-1}, x_{2t}), d(x_{2t}, x_{2t-1})\} 
- \psi \max\{d(x_{2t-1}, x_{2t}), d(x_{2t}, x_{2t-1})\} 
\leq \phi \max\{d(x_{2t-1}, x_{2t}), d(x_{2t}, x_{2t-1})\}.$$
(2.10)

Since  $\phi$  is an altering distance function, then

$$d(x_{2t}, x_{2t+1}) \le \max\{d(x_{2t-1}, x_{2t}), d(x_{2t}, x_{2t-1})\}.$$
(2.11)

From (2.7) we have

$$d(x_{2t+1}, x_{2t}) \le d(x_{2t}, x_{2t-1}) \le \max\{d(x_{2t-1}, x_{2t}), d(x_{2t}, x_{2t-1})\}.$$
(2.12)

From (2.11) and (2.12), we have

$$\max\{d(x_{2t+1}, x_{2t}), d(x_{2t}, x_{2t+1})\} \le \max\{d(x_{2t-1}, x_{2t}), d(x_{2t}, x_{2t-1})\}.$$
(2.13)

Similarly, we can show that

$$\max\{d(x_{2t+1}, x_{2t+2}), d(x_{2t+2}, x_{2t+1})\} \le \max\{d(x_{2t+1}, x_{2t}), d(x_{2t}, x_{2t+1})\}.$$
(2.14)

From (2.13) and (2.14), we get that

$$\max\{d(x_n, x_{n+1}), d(x_{n+1}, x_n)\} \le \max\{d(x_n, x_{n-1}), d(x_{n-1}, x_n)\} \text{ holds for all } n \in \mathbb{N}$$

So  $(\max\{d(x_n, x_{n+1}), d(x_{n+1}, x_n)\})$  is a nonnegative decreasing sequence. Hence there exists  $r \ge 0$  such that

$$\lim_{n \to \infty} \max\{d(x_n, x_{n+1}), d(x_{n+1}, x_n)\} = r.$$

From (2.9), we get

$$\lim_{n \to \infty} d(x_n, x_{n+1}) = r.$$

From (2.10), we get

$$\phi(r) \le \phi(r) - \psi(r)$$

So  $\psi(r) = 0$ , and hence r = 0. Therefore, for all  $n \in \mathbb{N}$ 

$$\lim_{n \to \infty} d(x_n, x_{n+1}) = 0.$$

Now, our claim is to show that  $(x_n)$  is Cauchy sequence. To show that  $(x_n)$  is a Cauchy sequence it is sufficient to show that  $(x_{2n})$  is a Cauchy sequence; that is  $(x_{2n})$  is left-Cauchy and right-Cauchy. Suppose to the contrary that  $(x_{2n})$  is not left-Cauchy. Then there is  $\epsilon > 0$  and two subsequences  $(x_{2n_k})$  and  $(x_{2m_k})$  such that  $(x_{2n_k})$  chosen to be the smallest index for which

$$d(x_{2n_k}, x_{2m_k}) \ge \epsilon \quad 2n_k > 2m_k > k.$$
(2.15)

This means that

$$d(x_{2n_k-2}, x_{2m_k}) < \epsilon$$

From (2.15), we get

$$\epsilon \leq d(x_{2n_k}, x_{2m_k}) \leq d(x_{2n_k}, x_{2n_k-1}) + d(x_{2n_k-1}, x_{2m_k})$$
  
$$\leq d(x_{2n_k}, x_{2n_k-1}) + d(x_{2n_k-1}, x_{2n_k-2}) + d(x_{2n_k-2}, x_{2m_k}).$$

Taking the limit as  $k \to \infty$  and using (2.9), we conclude

$$\lim_{k \to \infty} d(x_{2n_k-1}, x_{2m_k}) = \epsilon.$$
(2.16)

Again, from (2.15), we obtain

$$\epsilon \leq d(x_{2n_k}, x_{2m_k}) \leq d(x_{2n_k}, x_{2m_k+1}) + d(x_{2m_k+1}, x_{2m_k}).$$

Taking the limit as  $k \to \infty$  and using (2.9), we see that

$$\epsilon \le \lim_{k \to \infty} d(x_{2n_k}, x_{2m_k+1}). \tag{2.17}$$

The contraction condition (2.2) yields

$$\phi d(x_{2n_k}, x_{2m_k+1}) = \phi d(gx_{2n_k-1}, fx_{2m_k}) \leq \phi \max\{d(x_{2n_k-1}, x_{2m_k}), d(x_{2n_k}, x_{2n_k-1}), d(x_{2m_k+1}, x_{2m_k})\} - \psi \max\{d(x_{2n_k-1}, x_{2m_k}), d(x_{2n_k}, x_{2n_k-1}), d(x_{2m_k+1}, x_{2m_k})\}.$$

Taking the limit as  $k \to \infty$  and using the continuity of  $\phi, \psi$  and using (2.9),(2.16), and (2.17), we get

$$\phi \epsilon \le \phi \lim_{k \to \infty} d(x_{2n_k}, x_{2m_k+1}) \le \phi \epsilon - \psi \epsilon.$$

Therefore,  $\psi \epsilon = 0$ , and hence  $\epsilon = 0$  which is 1a contradiction since  $\epsilon > 0$ . Hence  $(x_{2n})$  is a left-Cauchy sequence. In a similar manner we can prove that  $(x_{2n})$  is a right-Cauchy sequence.

Since (X, d) is a complete quasi metric space, then  $(x_n)$  converges to some element  $u \in X$ . Therefore any subsequence of  $(x_n)$  also converges to u. Thus the subsequences  $(x_{2n})$  and  $(x_{2n+1})$ also converge to u. Since  $(x_{2n})$  is a sequence in A, A is a closed subset of X and  $\lim_{n\to\infty} x_{2n} = u$ , then  $u \in A$ . Also, since  $(x_{2n+1})$  is a sequence in B, B is a closed subset of X and  $\lim_{n\to\infty} x_{2n+1} = u$ , then  $u \in B$ .

By using the continuity of f, we get

$$\lim_{n \to \infty} d(x_n, fu) = \lim_{n \to \infty} d(fx_{n-1}, fu) = 0 \text{ and } \lim_{n \to \infty} d(fu, x_n) = \lim_{n \to \infty} d(fu, fx_{n-1}) = 0.$$

Hence

$$\lim_{n \to \infty} d(fu, x_n) = \lim_{n \to \infty} d(x_n, fu) = 0.$$

Thus  $(x_n)$  converges to fu. By uniqueness of the limit, we have fu = u. So u is a fixed point of f in  $A \cap B$ .

Now, since  $u \leq u$ , then from (2.2), we get

$$\phi d(gu, u) = \phi d(gu, fu)$$

Thus  $\phi d(gu, u) \leq \phi d(gu, u) - \psi d(gu, u)$ . Hence  $\psi d(gu, u) = 0$ , and so d(gu, u) = 0. Therefore gu = u. Hence u is a common fixed point for f and g in  $A \cap B$ .

Remark 2.5. The previous theorem is still correct if we choose the function  $\psi : [0, \infty) \to [0, \infty)$  just as a continuous function.

**Corollary 2.6.** Let  $(X, \preceq)$  be a partially ordered set and suppose that (X,d) is a complete quasimetric space. Let A, B be two nonempty closed subsets of X with respect to the topology induced by d with  $X = A \cup B$  and  $A \cap B \neq \phi$ . Let  $f : A \cup B \rightarrow A \cup B$  such that  $fx \preceq f^2x$  for all  $x \in X$  with  $f(A) \subseteq B, f(B) \subseteq A$ . Let  $\phi, \psi$  be altering distance functions. Also suppose that

$$\phi d(fx, fy) \le \phi \max\{d(x, y), d(fx, x), d(fy, y)\} - \psi \max\{d(x, y), d(fx, x), d(fy, y)\}$$

for all comparative  $x, y \in X$  with  $x \in A$ ,  $y \in B$  or  $x \in B$ ,  $y \in A$ . Also,

- 1. suppose that there exists  $x_0 \in A$  such that  $x_0 \preceq f x_0$ ,
- 2. if f or g is continuous.

Then f and g have a common fixed point in  $A \cap B$ .

*Proof.* It follows from Theorem 2.4 by taking g = f.

**Corollary 2.7.** Let  $(X, \preceq)$  be a partially ordered set and suppose that (X,d) is a complete quasimetric space. Let  $f, g: X \to X$  such that the pair f and g are weakly increasing mappings. Let  $\phi, \psi$ be an altering distance functions. Moreover, suppose that

 $\phi d(fx, gy) \le \phi \max\{d(x, y), d(fx, x), d(gy, y)\} - \psi \max\{d(x, y), d(fx, x), d(gy, y)\}$ 

for all comparative  $x, y \in X$ , and

 $\phi d(gx, fy) \le \phi \max\{d(x, y), d(gx, x), d(fy, y)\} - \psi \max\{d(x, y), d(gx, x), d(fy, y)\}$ 

for all comparative  $x, y \in X$ . Also,

- 1. suppose that there exists  $x_0 \in A$  such that  $x_0 \preceq f x_0$ ,
- 2. if f or g is continuous.

Then f and g have a common fixed point in  $A \cap B$ .

*Proof.* It follows from Theorem 2.4 by taking A = B = X.

By replacing g by f and taking A = B = X in Theorem 2.4 we get the following result.

**Corollary 2.8.** Let  $(X, \preceq)$  be a partially ordered set and suppose that (X,d) is a complete quasimetric space. Let  $f : X \to X$  such that  $fx \preceq f^2x$ . Let  $\phi, \psi$  be an altering distance functions. Moreover, suppose that

$$\phi d(fx, fy) \le \phi \max\{d(x, y), d(fx, x), d(fy, y)\} - \psi \max\{d(x, y), d(fx, x), d(fy, y)\}$$

for all comparative  $x, y \in X$ . Also,

- 1. suppose that there exists  $x_0 \in A$  such that  $x_0 \preceq f x_0$ ,
- 2. if f or g is continuous.

Then f and g have a common fixed point in  $A \cap B$ .

If we define  $\phi : [0, \infty) \to [0, \infty)$  by  $\phi(t) = t$  and  $\psi : [0, \infty) \to [0, \infty)$  by  $\psi(t) = (1-k)t$ ,  $k \in [0, 1)$ , then we get the following result.

**Theorem 2.9.** Let  $(X, \preceq)$  be a partially ordered set and suppose that (X,d) is a complete quasimetric space. Let A, B be two nonempty closed subsets of X with respect to the topology induced by dwith  $X = A \cup B$  and  $A \cap B \neq \phi$ . Let  $f, g : A \cup B \rightarrow A \cup B$  such that the pair (f,g) is (A,B)-weakly increasing with  $f(A) \subseteq B, g(B) \subseteq A$ . Suppose that

 $d(fx, gy) \le k \max\{d(x, y), d(fx, x), d(gy, y)\}$ 

for all comparative  $x, y \in X$  with  $x \in A, y \in B$ , and

 $d(gx, fy) \le k \max\{d(x, y), d(gx, x), d(fy, y)\}$ 

for all comparative  $x, y \in X$  with  $x \in B, y \in A$ . Also,

- 1. suppose that there exists  $x_0 \in A$  such that  $x_0 \preceq f x_0$ ,
- 2. if f or g is continuous.

Then f and g have a common fixed point in  $A \cap B$ .

**Corollary 2.10.** Let  $(X, \preceq)$  be a partially ordered set and suppose that (X,d) is a complete quasimetric space. Let A, B be two nonempty closed subsets of X with respect to the topology induced by d with  $X = A \cup B$  and  $A \cap B \neq \phi$ . Let  $f : A \cup B \rightarrow A \cup B$  such that  $fx \preceq f^2x$  forall  $x \in X$  with  $f(A) \subseteq B, f(B) \subseteq A$ . Suppose that

$$d(fx, fy) \le k \max\{d(x, y), d(fx, x), d(fy, y)\}$$

for all comparative  $x, y \in X$  with  $x \in A$ ,  $y \in B$  or  $x \in B$ ,  $y \in A$ . Also,

- 1. suppose that there exists  $x_0 \in A$  such that  $x_0 \preceq fx_0$ ,
- 2. if f or g is continuous.

Then f and g have a common fixed point in  $A \cap B$ .

*Proof.* The proof follows from Theorem 2.9 by taking g = f.

**Corollary 2.11.** Let  $(X, \preceq)$  be a partially ordered set and suppose that (X,d) is a complete quasimetric space. Let  $f, g: X \to X$  such that the pair f and g are weakly increasing. Suppose that

 $d(fx, gy) \le k \max\{d(x, y), d(fx, x), d(gy, y)\}$ 

for all comparative  $x, y \in X$ , and

 $d(gx, fy) \le k \max\{d(x, y), d(gx, x), d(fy, y)\}$ 

for all comparative  $x, y \in X$ . Also,

1. suppose that there exists  $x_0 \in A$  such that  $x_0 \preceq f x_0$ ,

2. if f or g is continuous.

Then f and g have a common fixed point in  $A \cap B$ .

*Proof.* It follows from Theorem 2.9 by taking A = B = X

If we take g = f and A = B = X in Theorem 2.9, then we get the following result.

**Corollary 2.12.** Let  $(X, \preceq)$  be a partially ordered set and suppose that (X,d) is a complete quasimetric space. Let  $f: X \to X$  such that  $fx \preceq f^2 x \ \forall x \in X$ . Suppose that

 $d(fx, fy) \le k \max\{d(x, y), d(fx, x), d(fy, y)\}$ 

for all comparative  $x, y \in X$ , and

- 1. suppose that there exists  $x_0 \in A$  such that  $x_0 \preceq f x_0$ ,
- 2. if f or g is continuous.

Then f and g have a common fixed point in  $A \cap B$ .

#### 3. Common fixed point theorems in G-metric spaces

**Theorem 3.1.** Let  $(X, \preceq)$  be a partially ordered set and suppose that there exists a *G*-metric on X such that (X,G) is a complete *G*-metric space. Let A,B be two nonempty closed subsets of X with respect to the topology induced by G with  $X = A \cup B$ . Let  $f, g : A \cup B \to A \cup B$  be two mappings such that the pair (f,g) is (A,B)-weakly increasing with  $f(A) \subseteq B, g(B) \subseteq A$ . Let  $\phi$  and  $\psi$  be an altering distance functions. Moreover, suppose that

$$\phi G(fx, gy, gy) \le \phi \max\{G(x, y, y), G(fx, x, x), G(gy, y, y)\} - \psi \max\{G(x, y, y), G(fx, x, x), G(gy, y, y)\}$$

for all comparative  $x, y \in X$  with  $x \in A, y \in B$ , and

$$\phi G(gx, fy, fy) \le \phi \max\{G(x, y, y), G(gx, x, x), G(fy, y, y)\} -\psi \max\{G(x, y, y), G(gx, x, x), G(fy, y, y)\}$$

for all comparative  $x, y \in X$  with  $x \in B, y \in A$ . Also

- 1. suppose that there exists  $x_0 \in A$  such that  $x_0 \preceq fx_0$ ,
- 2. if f or g is continuous.

Then f and g have a common fixed point in  $A \cap B$ .

*Proof.* Let  $d : X \times X \to [0, \infty)$  defined by d(x, y) = G(x, y, y) for all comparative  $x, y \in X$  with  $x \in A, y \in B$  and d(y, x) = G(y, x, x) for all comparative  $x, y \in X$  with  $x \in A, y \in B$ . Then by Theorem 1.14, (X, d) is a quasi metric space. From the contractive conditions we have

$$\phi d(fx, gy) \le \phi \max\{d(x, y), d(fx, x), d(gy, y)\} - \psi \max\{d(x, y), d(fx, x), d(gy, y)\}$$

for all comparative  $x, y \in X$  with  $x \in A, y \in B$ , and

$$\phi d(gx, fy) \le \phi \max\{d(x, y), d(gx, x), d(fy, y)\} - \psi \max\{d(x, y), d(gx, x), d(fy, y)\}$$

for all comparative  $x, y \in X$  with  $x \in B$ ,  $y \in A$ . By Theorem 2.4, f and g have a common fixed point in  $A \cap B$ .

**Theorem 3.2.** Let  $(X, \preceq)$  be a partially ordered set and suppose that there exists a *G*-metric on X such that (X,G) is a complete *G*-metric space. Let A and B be two nonempty closed subsets of X with respect to the topology induced by G with  $X = A \cup B$ . Let  $f, g : A \cup B \to A \cup B$  be two mappings such that the pair (f,g) is (A,B)-weakly increasing with  $f(A) \subseteq B$  and  $g(B) \subseteq A$ . Suppose that there exists  $r \in [0,1)$  such that

$$G(fx, gy, gy) \le k \max\{G(x, y, y), G(fx, x, x), G(gy, y, y)\}$$

for all comparative  $x, y \in X$  with  $x \in A, y \in B$ , and

$$G(gx, fy, fy) \le k \max\{G(x, y, y), G(gx, x, x), G(fy, y, y)\}$$

for all comparative  $x, y \in X$  with  $x \in B, y \in A$ . Also,

- 1. suppose that there exists  $x_0 \in A$  such that  $x_0 \preceq f x_0$ ,
- 2. if f or g is continuous.

Then f and g have a common fixed point in  $A \cap B$ .

*Proof.* As in the proof of Theorem 3.1, we consider the function  $d : X \times X \to [0, \infty)$  such that d(x, y) = G(x, y, y) for all comparative  $x, y \in X$  with  $x \in A$ ,  $y \in B$  and d(y, x) = G(y, x, x) for all comparative  $x, y \in X$  with  $x \in A$ ,  $y \in B$ . Then by Theorem 1.14, (X, d) is a quasi metric space. From the contractive conditions we have

$$d(fx, gy) \le k \max\{d(x, y), d(fx, x), d(gy, y)\}$$

for all comparative  $x, y \in X$  with  $x \in A, y \in B$ , and

$$d(gx, fy) \le k \max\{d(x, y), d(gx, x), d(fy, y)\}$$

for all comparative  $x, y \in X$  with  $x \in B$ ,  $y \in A$ . By Theorem 2.9, f and g have a common fixed point in  $A \cap B$ .

Remark 3.3. We can prove Theorem 3.2 from Theorem 3.1 by choosing  $\phi t = t$  and  $\psi t = (1 - k)t$ , where  $0 \le k < 1$ .

Next, we introduce an example to support our result.

**Example 3.4.** Let  $X = \{0, 1, 2, 3, \dots\}$  and define a relation  $\leq$  on X by  $a, b \in X$ ,  $a \leq b$  iff  $a - b \geq 0$  and let A and B be two subsets of X such that  $A = \{0, 2, 4, 6, \dots\}, B = \{0, 1, 3, 5, \dots\}.$ 

Define 
$$d: X \times X \to [0, \infty)$$
 by  $d(x, y) = \begin{cases} 0, & x = y; \\ x + 2y, & x \neq y. \end{cases}$   
Let  $f, g: A \cup B \to A \cup B$  be defined by  $fx = \begin{cases} 0, & x = 0, 1, 2; \\ x - 3, & x \geq 3. \end{cases}$   $gx = \begin{cases} 0, & x = 0, 1; \\ x - 1, & x \geq 2. \end{cases}$   
Also, define  $\phi, \psi: [0, \infty) \to [0, \infty)$  by  $\phi t = t^2, \ \psi t = t.$  Then

(1)  $(X, d, \prec)$  is a partially ordered complete quasi metric space;

- (2) A and B are closed subsets of X with respect to the topology induced by d;
- (3) the pare (f, g) is (A, B)-weakly increasing with  $f(A) \subseteq B$ ,  $g(B) \subseteq A$ ;
- (4)  $\phi$  and  $\psi$  are altering distance functions;
- (5) there is  $x_0 \in X$  such that  $x_0 \preceq f x_0$ ;

(6)

$$\phi d(fx, gy) \le \phi \max\{d(x, y), d(fx, x), d(gy, y)\} - \psi \max\{d(x, y), d(fx, x), d(gy, y)\}$$
(3.1)

for all comparative  $x, y \in X$  with  $x \in A, y \in B$ , and

$$\phi d(gx, fy) \le \phi \max\{d(x, y), d(gx, x), d(fy, y)\} - \psi \max\{d(x, y), d(gx, x), d(fy, y)\}$$
(3.2)

for all comparative  $x, y \in X$  with  $x \in B, y \in A$ .

*Proof.* The proofs of (1), (2), (3), (4), and (5) are clear. We show (6).

Let  $x \in A$ ,  $y \in B$ . Then we have the following cases:

Case (I): If  $x \in \{0, 1, 2\}$  and  $y \in \{0, 1\}$ , then fx = 0 and gy = 0. Hence the left hand side of (3.1) is equal to 0 and so (3.1) is satisfied.

Case (II): If  $x \ge 3$  and  $y \ge 2$ , then

Subcase (1): If x - 3 = y - 1, then  $\phi d(fx, gy) = [d(x - 3, y - 1)]^2 = [0]^2 = 0$  and so (3.1) is satisfied. Subcase (2): If  $x - 3 \neq y - 1$ , then

$$\phi d(fx, gy) = [d(x-3, y-1)]^2 = [x+2y-5]^2 = x^2 + 4y^2 + 25 + 4xy - 10x - 20y$$

On the other hand

$$\begin{aligned} &[\max\{d(x,y), d(fx,x), d(gy,y)\}]^2 - \max\{d(x,y), d(fx,x), d(gy,y)\} \\ &= [\max\{d(x,y), d(x-3,x), d(y-1,y)\}]^2 - \max\{d(x,y), d(x-3,x), d(y-1,y)\} \\ &= [\max\{x+2y, 2x-3, 2y-1\}]^2 - \max\{x+2y, 2x-3, 2y-1\}.\end{aligned}$$

If  $\max\{x + 2y, 2x - 3, 2y - 1\} = x + 2y$ , then the right hand side is  $x^2 + 4y^2 + 4xy - x - 2y$ . Assume to the contrary that  $x^2 + 4y^2 + 25 + 4xy - 10x - 20y > x^2 + 4y^2 + 4xy - x - 2y$ . Then we have 9x + 18y < 25 a contradiction since  $x \ge 3$  and  $y \ge 2$ . Thus we have  $x^2 + 4y^2 + 25 + 4xy - 10x - 20y \le x^2 + 4y^2 + 4xy - x - 2y$ . If  $\max\{x + 2y, 2x - 3, 2y - 1\} = 2x - 3$  or 2y - 1, then the result is clear since if  $a, b \in \mathbb{N}$  with a < b, then  $a^2 - a < b^2 - b$ . Thus (3.1) is satisfied. In a similar manner we can show that (3.2) is satisfied. Hence all hypothesis of Theorem 3.1 hold true. Therefore f and g have a common fixed point in  $A \cap B$ . In this example the common fixed point of f and g in  $A \cap B$  is 0.

### Acknowledgment

The authors would like to acknowledge the grant: UKM Grant DIP-2014-034 and Ministry of Education, Malaysia grant FRGS/1/2014/ST06/UKM/01/1 for financial support.

## References

- R. P. Agarwal, M. A. El-Gebeily, D. O'Regan, Generalized contractions in partially ordered metric spaces, Appl. Anal., 87 (2008), 109–116. 1, 1.1
- [2] R. P. Agarwal. E. Karapınar, A. F. Roldán-López-de-Hierro, Last remarks on G-metric spaces and related fixed point theorems, Rev. R. Acad. Cienc. Exactas Fs. Nat. Ser. A Math. RACSAM, 110 (2016), 433–456. 1
- [3] I. Alyun, H. Simsek, Some fixed point theorems on orderd metric spaces and applications, Fixed Point Theory Appl., 2010 (2010), 17 pages. 2.1

- [4] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133–181.
- [5] M. Jleli, B. Samet, Remarks on G-metric spaces and fixed point theorems, Fixed Point Theory Appl., 2012 (2012), 7 pages. 1, 1.3, 1.4, 1.5, 1.6, 1.7, 1.14
- M. S. Khan, M. Swaleh, S. Sessa, Fixed point theorems by altering distances between the points, Bull. Austral. Math. Soc., 30 (1984), 1–9. 2.3
- [7] N. V. Luong, N. X. Thuan, Coupled fixed point theorems in partially ordered G-metric spaces, Math. Comput. Modelling, 55 (2012), 1601–1609.
- [8] Z. Mustafa, Common fixed points of weakly compatible mappings in G-metric spaces, Appl. Math. Sci. (Ruse), 6 (2012), 4589–4600.
- [9] Z. Mustafa, Some new common fixed point theorems under strict contractive conditions in G-metric spaces, J. Appl. Math., 2012 (2012), 21 pages.
- [10] Z. Mustafa, M. Khandaqji, W. Shatanawi, Fixed point results on complete G-metric spaces, Studia Sci. Math. Hungar., 48 (2011), 304–319.
- [11] Z. Mustafa, H. Obiedat, A fixed point theorem of Reich in G-metric spaces, Cubo, 12 (2010), 83–93.
- [12] Z. Mustafa, H. Obiedat, F. Awawdeh, Some fixed point theorem for mapping on complete G-metric spaces, Fixed Point Theory Appl., 2008 (2008), 12 pages.
- [13] Z. Mustafa, W. Shatanawi, M. Bataineh, Existence of fixed point results in G-metric spaces, Int. J. Math. Math. Sci., 2009 (2009), 10 pages.
- [14] Z. Mustafa, B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal., 7 (2006), 289–297. 1, 1, 1.8, 1.9, 1.10, 1.11, 1.12, 1.13
- [15] Z. Mustafa, B. Sims, Fixed point theorems for contractive mappings in complete G-metric spaces, Fixed Point Theory Appl., 2009 (2009), 10 pages.
- [16] B. Samet, C. Vetro, F. Vetro, Remarks on G-metric spaces, Int. J. Anal., 2013 (2013), 6 pages. 1
- [17] W. Shatanawi, M. Postolache, Some fixed-point results for a G-weak contraction in G-metric spaces, Abstr. Appl. Anal., 2012 (2012), 19 pages.
- [18] W. Shatanawi, M. Postolache, Common fixed point results for mappings under nonlinear contraction of cyclic form in ordered metric spaces, Fixed Point Theory Appl., 2013 (2013), 13 pages. 1, 2.2
- [19] W. A. Wilson, On quasi-metric spaces, Amer. J. Math., 53 (1931), 675–684. 1