Fixed and common fixed point theorems in partially ordered quasi-metric spaces

Wasfi Shatanawi ${ }^{\text {a,b }}$, Mohd Salmi MD Nooranic ${ }^{\text {c }}$, Habes Alsamir ${ }^{\text {c,*, }}$, Anwar Bataihah ${ }^{\text {d }}$
${ }^{a}$ Department of Mathematics and general courses, Prince Sultan University, Riyadh, Saudi Arabia.
${ }^{b}$ Department of Mathematics, Hashemite University, Zarqa, Jordan.
${ }^{c}$ School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan, Malaysia, 43600 UKM, Selangor.
${ }^{d}$ Department of Mathematics, Faculty of Science, Irbid National University, Irbid, Jordan.

Abstract

In this paper, we prove some new fixed and common fixed point results in the framework of partially ordered quasi-metric spaces under linear and nonlinear contractions. Also we obtain some fixed point results in the framework of G-metric spaces. (C)2016 All rights reserved.

Keywords: Quasi metric, common fixed point theorem, nonlinear contraction, altering distance function, G-metric spaces.
2010 MSC: 54H25, 47H10.

1. Introduction and preliminaries

The fixed point theory is considered as a basic and very simple mathematical setting, since it has some applications in many interesting fields such as differential equations, economics and engineering. The existence of a fixed point is a pivotal property of a function. Many necessary or sufficient conditions for the presence of such points are considered in many areas in mathematics.

The Banach contraction theorem [4] is considered as a fundamental theorem concerning fixed point theorem in a complete metric space which is appeared in 1922 and rise for its elegant and simple proof which it is known later as Banach contraction principle. Subsequently, a large number

[^0]of generalizations of Banach contraction principle were obtained, for example in 2008, Agarwal et al. [1] introduced and proved the following theorem.

Theorem $1.1([\mathbb{1}$, Theorem 2.3]). Let (X, d, \preceq) be a partially ordered complete metric space. Assume $\psi:[0,+\infty) \rightarrow[0,+\infty)$ is a non-decreasing function with $\psi(t)<t$ for each $t>0$. Moreover, suppose that f is a nondecreasing mapping satisfying the following form

$$
d(f(x), f(y)) \leq \psi(\max \{f d(x, y), d(x, f(x)), d(y, f(y))\})
$$

for all $x \geq y$. Also assume either f is continuous or if $\left(x_{n}\right) \subseteq X$ is a nondecreasing sequence with x_{n} $\rightarrow x$ in X, then $x_{n} \leq x$ for all n holds. If there exists an $x_{0} \in X$ with $x_{0} \leq f\left(x_{0}\right)$ then f has a fixed point.

The concept of quasi-metric spaces was generated by Wilson [19] in 1931 as the following:
Definition 1.2. Let X be a non empty set and $d: X \times X \rightarrow[0, \infty)$ be a given function which satisfies
(1) $d(x, y)=0$ iff $x=y$;
(2) $d(x, y) \leq d(x, z)+d(z, y)$ for any points $x, y, z \in X$.

Then d is called a quasi metric on X and the pair (X, d) is called a quasi metric space.
It is clear that every metric space is a quasi metric space, but the reverse is not necessarily true.
Jleli and Samet [5] and Samet et al. [16] utilized the notion of quasi-metric space to obtain some fixed point theorems. In their interesting papers, they pointed out that some fixed point results in G-metric space in sense of Mustafa and Sims [14] can be obtained from quasi-metric space. Agarwal et. al [2] showed that many fixed point theorems in G-metric spaces can be derived from known existing results if all arguments are not distinct. For some results in G-metric space, we refer the reader to [7-18].

The convergence and completeness in a quasi-metric space are defined as follows:
Definition 1.3 ([5). Let (X, d) be a quasi-metric space, $\left(x_{n}\right)$ be a sequence in X, and $x \in X$. Then the sequence $\left(x_{n}\right)$ converges to x if and only if $\lim _{n \rightarrow \infty} d\left(x_{n}, x\right)=\lim _{n \rightarrow \infty} d\left(x, x_{n}\right)=0$.

Definition 1.4 (5). Let (X, d) be a quasi-metric space and $\left(x_{n}\right)$ be a sequence in X. We say that the sequence $\left(x_{n}\right)$ is left-Cauchy if for every $\epsilon>0$ there is positive integer $N=N(\epsilon)$ such that $d\left(x_{n}, x_{m}\right) \leq \epsilon$ for all $n \geq m>N$.

Definition 1.5 (5). Let (X, d) be a quasi-metric space and $\left(x_{n}\right)$ be a sequence in X. We say that the sequence $\left(x_{n}\right)$ is right-Cauchy if for every $\epsilon>0$ there is a positive integer $N=N(\epsilon)$ such that $d\left(x_{n}, x_{m}\right) \leq \epsilon$ for all $m \geq n>N$.

Definition 1.6 (5]). Let (X, d) be a quasi-metric space and $\left(x_{n}\right)$ be a sequence in X. We say that the sequence $\left(x_{n}\right)$ is Cauchy if for every $\epsilon>0$ there is positive integer $N=N(\epsilon)$ such that $d\left(x_{n}, x_{m}\right) \leq \epsilon$ for all $m, n>N$.

Definition 1.7 (5). Let (X, d) be a quasi-metric space. We say that
(1) (X, d) is left-complete if and only if every left-Cauchy sequence in X is convergent;
(2) (X, d) is right-complete if and only if every right-Cauchy sequence in X is convergent;
(3) (X, d) is complete if and only if every Cauchy sequence in X is convergent.

Mustafa and Sims [14] introduced the notion of G-metric spaces as follows:
Definition 1.8 ([14]). Let X be a nonempty set and let $G: X \times X \times X \rightarrow[0, \infty)$ be a function satisfying:
(G1) $G(x, y, z)=0$ if $x=y=z$,
(G2) $G(x, x, y)>0$ for all $x, y \in X$, with $x \neq y$,
(G3) $G(x, y, y) \leq G(x, y, z)$ for all $x, y, z \in X$, with $y \neq z$,
(G4) $G(x, y, z)=G(p\{x, y, z\})$, where $p\{x, y, z\}$ is the all possible permutations of $\{x, y, z\}$ (symmetry),
(G5) $G(x, y, z) \leq G(x, a, a)+G(a, y, z) \forall x, y, z, a \in X$ (rectangle inequality).
Then the function G is called a generalized metric, or more specifically a G-metric on X, and the pair (X, G) is called a G-metric space.
Definition 1.9 ([14]). Let (X, G) be a G-metric space and let $\left(x_{n}\right)$ be a sequence of points of X. Then we say that $\left(x_{n}\right)$ is G-convergent to x if $\lim _{n, m \rightarrow \infty} G\left(x, x_{n}, x_{m}\right)=0$; that is, for any $\epsilon>0$, there exists $k \in \mathbb{N}$ such that $G\left(x, x_{n}, x_{m}\right)<\epsilon$, for all $n, m \geq k$.
Proposition 1.10 ([14]). Let (X, G) be a G-metric space. Then the following assertions are equivalent
(1) $\left(x_{n}\right)$ is G-convergent to x;
(2) $G\left(x_{n}, x_{n}, x\right) \rightarrow 0$ asn $\rightarrow \infty$;
(3) $G\left(x_{n}, x, x\right) \rightarrow 0$ as $n \rightarrow \infty$.

Definition 1.11 ([14]). Let (X, G) be a G-metric space. A sequence $\left(x_{n}\right)$ in X is said to be G-Cauchy if for every $\epsilon>0$, there exists $k \in \mathbb{N}$ such that

$$
G\left(x_{n}, x_{m}, x_{l}\right)<\epsilon, \quad \forall n, m, l \geq k
$$

Proposition 1.12 ([14]). In a G-metric space, the following are equivalent
(1) the sequence $\left(x_{n}\right)$ is G-Cauchy;
(2) for every $\epsilon>0$, there exists $k \in \mathbb{N}$ such that $G\left(x_{n}, x_{m}, x_{m}\right)<\epsilon$ for all $n, m \geq k$.

Definition 1.13 ([14]). A G-metric space (X, G) is said to be G-complete or complete G-metric space if every G-Cauchy sequence in (X, G) is G-convergent in (X, G).

The following theorem is a relation between G-metric spaces and quasi metric spaces.
Theorem 1.14 ([5]). Let (X, G) be a G-metric space and let $d: X \times X \rightarrow[0, \infty)$ defined by $d(x, y)=G(x, y, y)$. Then
(1) (X, d) is a quasi metric space;
(2) $\left(x_{n}\right) \subset X$ is G-convergent to $x \in X$ iff $\left(x_{n}\right)$ is convergent in (X, d);
(3) $\left(x_{n}\right) \subset X$ is G-Cauchy iff $\left(x_{n}\right)$ is Cauchy in (X, d);
(4) $\left(x_{n}\right) \subset X$ is G-complete iff $\left(x_{n}\right)$ is complete in (X, d).

2. Main result

We start with the following definitions.
Definition 2.1 (3). Let (X, \preceq) be a partially ordered set. Two mappings $F, G: X \rightarrow X$ are said to be weakly increasing if $F x \preceq G F x$ and $G x \preceq F G x$, for all $x \in X$.

Definition 2.2 ([18]). Let (X, \preceq) be a partially ordered set and A, B be closed subsets of X with $X=A \cup B$. Let $f, g: X \rightarrow X$ be two mappings. Then the pair (f, g) is said to be (A, B)-weakly increasing if $f x \preceq g f x$ for all $x \in A$ and $g x \preceq f g x$ for all $x \in B$.

Definition 2.3 (6]). The function $\phi:[0, \infty) \rightarrow[0, \infty)$ is called an altering distance function if the following properties are satisfied.
(1) ϕ is continuous and nondecreasing.
(2) $\phi(t)=0$ if and only if $t=0$.

Our main result in this section is the following theorem.
Theorem 2.4. Let (X, \preceq) be a partially ordered set and suppose that (X, d) is a complete quasimetric space. Let A, B be two nonempty closed subsets of X with respect to the topology induced by d with $X=A \cup B$ and $A \cap B \neq \phi$. Let $f, g: A \cup B \rightarrow A \cup B$ such that the pair (f, g) is (A, B)-weakly increasing with $f(A) \subseteq B, g(B) \subseteq A$. Let ϕ, ψ be altering distance functions. Moreover, suppose that

$$
\begin{equation*}
\phi d(f x, g y) \leq \phi \max \{d(x, y), d(f x, x), d(g y, y)\}-\psi \max \{d(x, y), d(f x, x), d(g y, y)\} \tag{2.1}
\end{equation*}
$$

for all comparative $x, y \in X$ with $x \in A, y \in B$, and

$$
\begin{equation*}
\phi d(g x, f y) \leq \phi \max \{d(x, y), d(g x, x), d(f y, y)\}-\psi \max \{d(x, y), d(g x, x), d(f y, y)\} \tag{2.2}
\end{equation*}
$$

for all comparative $x, y \in X$ with $x \in B, y \in A$. Also,

1. suppose that there exists $x_{0} \in A$ such that $x_{0} \preceq f x_{0}$,
2. if f or g is continuous.

Then f and g have a common fixed point in $A \cap B$.
Proof. From 1. there exists $x_{0} \in A$ such that $x_{0} \preceq f x_{0}$. Since $f(A) \subseteq B$, then $x_{1}=f x_{0} \in B$. Also, since $g(B) \subseteq A$, then $x_{2}=g x_{1} \in B$. By continuing this way, we construct a sequence $\left(x_{n}\right)$ in X such that $f x_{2 n}=x_{2 n+1}, x_{2 n} \in A, g x_{2 n+1}=x_{2 n+2}$ and $x_{2 n+1} \in B, n \in \mathbb{N} \cup\{0\}$. Since (f, g) is (A, B)-weakly increasing, then $x_{0} \preceq f x_{0}=x_{1} \preceq g f x_{0}=g x_{1}=x_{2} \preceq f g x_{1}=f x_{2}=x_{3} \cdots$. Thus $x_{n} \preceq x_{n+1}$ for all $n \geq 0$. If there exists some $k \in \mathbb{N}$ such that $x_{2 k}=x_{2 k+1}$, then $x_{2 k}$ is a fixed point for f in $A \cap B$. To show that $x_{2 k}$ is also a fixed point for g it is equivalent to show that $x_{2 k}=x_{2 k+1}=x_{2 k+2}$. Since $x_{2 k} \preceq x_{2 k+1}$, then by (2.2) we have

$$
\begin{aligned}
\phi d\left(x_{2 k+2}, x_{2 k+1}\right)= & \phi d\left(g x_{2 k+1}, f x_{2 k}\right) \\
\leq & \phi \max \left\{d\left(x_{2 k+1}, x_{2 k}\right), d\left(x_{2 k+2}, x_{2 k+1}\right), d\left(x_{2 k+1}, x_{2 k}\right)\right\} \\
& -\psi \max \left\{d\left(x_{2 k+1}, x_{2 k}\right), d\left(x_{2 k+2}, x_{2 k+1}\right), d\left(x_{2 k+1}, x_{2 k}\right)\right\} \\
\leq & \phi d\left(x_{2 k+2}, x_{2 k+1}\right)-\psi d\left(x_{2 k+2}, x_{2 k+1}\right) .
\end{aligned}
$$

Therefore, $\psi d\left(x_{2 k+2}, x_{2 k+1}\right)=0$, and so $d\left(x_{2 k+2}, x_{2 k+1}\right)=0$. Hence $x_{2 k+2}=x_{2 k+1}$. Thus $x_{2 k}$ is a common fixed point for f and g in $A \cap B$.

Now, assume that $x_{n} \neq x_{n+1}$ for all $n \geq 0$. Let $n \in \mathbb{N}$. If n is even, then $n=2 t$ for some $t \in \mathbb{N}$. By (2.1), we have

$$
\begin{aligned}
\phi d\left(x_{n+1}, x_{n}\right)=\phi d\left(x_{2 t+1}, x_{2 t}\right)= & \phi d\left(f x_{2 t}, g x_{2 t-1}\right) \\
\leq & \phi \max \left\{d\left(x_{2 t}, x_{2 t-1}\right), d\left(x_{2 t+1}, x_{2 t}\right), d\left(x_{2 t}, x_{2 t-1}\right)\right\} \\
& -\psi \max \left\{d\left(x_{2 t}, x_{2 t-1}\right), d\left(x_{2 t+1}, x_{2 t}\right), d\left(x_{2 t}, x_{2 t-1}\right)\right\} \\
\leq & \phi \max \left\{d\left(x_{2 t+1}, x_{2 t}\right), d\left(x_{2 t}, x_{2 t-1}\right)\right\} \\
& -\psi \max \left\{d\left(x_{2 t+1}, x_{2 t}\right), d\left(x_{2 t}, x_{2 t-1}\right)\right\} .
\end{aligned}
$$

If $\max \left\{d\left(x_{2 t+1}, x_{2 t}\right), d\left(x_{2 t}, x_{2 t-1}\right)\right\}=d\left(x_{2 t+1}, x_{2 t}\right)$, then

$$
\phi d\left(x_{2 t+1}, x_{2 t}\right) \leq \phi d\left(x_{2 t+1}, x_{2 t}\right)-\psi d\left(x_{2 t+1}, x_{2 t}\right) .
$$

Therefore, $\psi d\left(x_{2 t+1}, x_{2 t}\right)=0$ and so $d\left(x_{2 t+1}, x_{2 t}\right)=0$. Thus $x_{2 t+1}=x_{2 t}$ is a contradiction. Hence $\max \left\{d\left(x_{2 t+1}, x_{2 t}\right), d\left(x_{2 t}, x_{2 t-1}\right)\right\}=d\left(x_{2 t}, x_{2 t-1}\right)$. Therefore

$$
\begin{equation*}
d\left(x_{n+1}, x_{n}\right) \leq d\left(x_{n}, x_{n-1}\right) \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi d\left(x_{n+1}, x_{n}\right) \leq \phi d\left(x_{n}, x_{n-1}\right)-\psi d\left(x_{n}, x_{n-1}\right) . \tag{2.4}
\end{equation*}
$$

If n is odd, then $n=2 t+1$ for some $t \in \mathbb{N}$. By (2.2), we have

$$
\begin{aligned}
\phi d\left(x_{n+1}, x_{n}\right)=\phi d\left(x_{2 t+2}, x_{2 t+1}\right)= & \phi d\left(g x_{2 t+1}, f x_{2 t}\right) \\
\leq & \phi \max \left\{d\left(x_{2 t+1}, x_{2 t}\right), d\left(x_{2 t+2}, x_{2 t+1}\right), d\left(x_{2 t+1}, x_{2 t}\right)\right\} \\
& -\psi \max \left\{d\left(x_{2 t+1}, x_{2 t}\right), d\left(x_{2 t+2}, x_{2 t+1}\right), d\left(x_{2 t+1}, x_{2 t}\right)\right\} \\
\leq & \phi \max \left\{d\left(x_{2 t+1}, x_{2 t}\right), d\left(x_{2 t+2}, x_{2 t+1}\right)\right\} \\
& -\psi \max \left\{d\left(x_{2 t+1}, x_{2 t}\right), d\left(x_{2 t+2}, x_{2 t+1}\right)\right\} .
\end{aligned}
$$

If $\max \left\{d\left(x_{2 t+1}, x_{2 t}\right), d\left(x_{2 t+2}, x_{2 t+1}\right)\right\}=d\left(x_{2 t+2}, x_{2 t+1}\right)$, then $\phi d\left(x_{2 t+2}, x_{2 t+1}\right) \leq \phi d\left(x_{2 t+2}, x_{2 t+1}\right)-$ $\psi d\left(x_{2 t+2}, x_{2 t+1}\right)$. Therefore, $\psi d\left(x_{2 t+2}, x_{2 t+1}\right)=0$, and so $d\left(x_{2 t+2}, x_{2 t+1}\right)=0$. Thus $x_{2 t+2}=x_{2 t+1}$ is a contradiction. Hence $\max \left\{d\left(x_{2 t+1}, x_{2 t}\right), d\left(x_{2 t+2}, x_{2 t+1}\right)\right\}=d\left(x_{2 t+1}, x_{2 t}\right)$. Therefore,

$$
\begin{equation*}
d\left(x_{n+1}, x_{n}\right) \leq d\left(x_{n}, x_{n-1}\right) \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi d\left(x_{n+1}, x_{n}\right) \leq \phi d\left(x_{n}, x_{n-1}\right)-\psi d\left(x_{n}, x_{n-1}\right) . \tag{2.6}
\end{equation*}
$$

From (2.3) and (2.5), we have for all $n \in \mathbb{N}$

$$
\begin{equation*}
d\left(x_{n+1}, x_{n}\right) \leq d\left(x_{n}, x_{n-1}\right) . \tag{2.7}
\end{equation*}
$$

Thus $\left(d\left(x_{n+1}, x_{n}\right): n \in \mathbb{N}\right)$ is a nonnegative decreasing sequence, so there exists $r \geq 0$ such that $\lim _{n \rightarrow \infty} d\left(x_{n+1}, x_{n}\right)=r$. Also, from 2.4 and 2.6 , we have for all $n \in \mathbb{N}$

$$
\begin{equation*}
\phi d\left(x_{n+1}, x_{n}\right) \leq \phi d\left(x_{n}, x_{n-1}\right)-\psi d\left(x_{n}, x_{n-1}\right) . \tag{2.8}
\end{equation*}
$$

By taking the limit as $n \rightarrow \infty$ in (2.8), we get $\phi r \leq \phi r-\psi r$ which implies that $\psi r=0$. Therefore, $r=0$. Thus

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(x_{n+1}, x_{n}\right)=0 \tag{2.9}
\end{equation*}
$$

Again, let $n \in \mathbb{N}$. If n is even, then $n=2 t$ for some $t \in \mathbb{N}$. By (2.2), we have

$$
\begin{aligned}
\phi d\left(x_{n}, x_{n+1}\right)=\phi d\left(x_{2 t}, x_{2 t+1}\right)= & \phi d\left(g x_{2 t-1}, f x_{2 t}\right) \\
\leq & \phi \max \left\{d\left(x_{2 t-1}, x_{2 t}\right), d\left(x_{2 t}, x_{2 t-1}\right), d\left(x_{2 t+1}, x_{2 t}\right)\right\} \\
& -\psi \max \left\{d\left(x_{2 t-1}, x_{2 t}\right), d\left(x_{2 t}, x_{2 t-1}\right), d\left(x_{2 t+1}, x_{2 t}\right)\right\}
\end{aligned}
$$

From (2.7), we have $d\left(x_{2 t}, x_{2 t-1}\right)>d\left(x_{2 t+1}, x_{2 t}\right)$. Thus

$$
\begin{align*}
\phi d\left(x_{2 t}, x_{2 t+1}\right) \leq & \phi \max \left\{d\left(x_{2 t-1}, x_{2 t}\right), d\left(x_{2 t}, x_{2 t-1}\right)\right\} \\
& -\psi \max \left\{d\left(x_{2 t-1}, x_{2 t}\right), d\left(x_{2 t}, x_{2 t-1}\right)\right\} \tag{2.10}\\
\leq & \phi \max \left\{d\left(x_{2 t-1}, x_{2 t}\right), d\left(x_{2 t}, x_{2 t-1}\right)\right\} .
\end{align*}
$$

Since ϕ is an altering distance function, then

$$
\begin{equation*}
d\left(x_{2 t}, x_{2 t+1}\right) \leq \max \left\{d\left(x_{2 t-1}, x_{2 t}\right), d\left(x_{2 t}, x_{2 t-1}\right)\right\} . \tag{2.11}
\end{equation*}
$$

From (2.7) we have

$$
\begin{equation*}
d\left(x_{2 t+1}, x_{2 t}\right) \leq d\left(x_{2 t}, x_{2 t-1}\right) \leq \max \left\{d\left(x_{2 t-1}, x_{2 t}\right), d\left(x_{2 t}, x_{2 t-1}\right)\right\} . \tag{2.12}
\end{equation*}
$$

From (2.11) and (2.12), we have

$$
\begin{equation*}
\max \left\{d\left(x_{2 t+1}, x_{2 t}\right), d\left(x_{2 t}, x_{2 t+1}\right)\right\} \leq \max \left\{d\left(x_{2 t-1}, x_{2 t}\right), d\left(x_{2 t}, x_{2 t-1}\right)\right\} . \tag{2.13}
\end{equation*}
$$

Similarly, we can show that

$$
\begin{equation*}
\max \left\{d\left(x_{2 t+1}, x_{2 t+2}\right), d\left(x_{2 t+2}, x_{2 t+1}\right)\right\} \leq \max \left\{d\left(x_{2 t+1}, x_{2 t}\right), d\left(x_{2 t}, x_{2 t+1}\right)\right\} \tag{2.14}
\end{equation*}
$$

From (2.13) and (2.14), we get that

$$
\max \left\{d\left(x_{n}, x_{n+1}\right), d\left(x_{n+1}, x_{n}\right)\right\} \leq \max \left\{d\left(x_{n}, x_{n-1}\right), d\left(x_{n-1}, x_{n}\right)\right\} \text { holds for all } \mathrm{n} \in \mathbb{N} .
$$

So $\left(\max \left\{d\left(x_{n}, x_{n+1}\right), d\left(x_{n+1}, x_{n}\right)\right\}\right)$ is a nonnegative decreasing sequence. Hence there exists $r \geq 0$ such that

$$
\lim _{n \rightarrow \infty} \max \left\{d\left(x_{n}, x_{n+1}\right), d\left(x_{n+1}, x_{n}\right)\right\}=r
$$

From (2.9), we get

$$
\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+1}\right)=r .
$$

From (2.10), we get

$$
\phi(r) \leq \phi(r)-\psi(r)
$$

So $\psi(r)=0$, and hence $r=0$. Therefore, for all $n \in \mathbb{N}$

$$
\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+1}\right)=0 .
$$

Now, our claim is to show that $\left(x_{n}\right)$ is Cauchy sequence. To show that $\left(x_{n}\right)$ is a Cauchy sequence it is sufficient to show that $\left(x_{2 n}\right)$ is a Cauchy sequence; that is $\left(x_{2 n}\right)$ is left-Cauchy and right-Cauchy. Suppose to the contrary that $\left(x_{2 n}\right)$ is not left-Cauchy. Then there is $\epsilon>0$ and two subsequences $\left(x_{2 n_{k}}\right)$ and $\left(x_{2 m_{k}}\right)$ such that $\left(x_{2 n_{k}}\right)$ chosen to be the smallest index for which

$$
\begin{equation*}
d\left(x_{2 n_{k}}, x_{2 m_{k}}\right) \geq \epsilon \quad 2 n_{k}>2 m_{k}>k . \tag{2.15}
\end{equation*}
$$

This means that

$$
d\left(x_{2 n_{k}-2}, x_{2 m_{k}}\right)<\epsilon .
$$

From (2.15), we get

$$
\begin{aligned}
\epsilon \leq d\left(x_{2 n_{k}}, x_{2 m_{k}}\right) & \leq d\left(x_{2 n_{k}}, x_{2 n_{k}-1}\right)+d\left(x_{2 n_{k}-1}, x_{2 m_{k}}\right) \\
& \leq d\left(x_{2 n_{k}}, x_{2 n_{k}-1}\right)+d\left(x_{2 n_{k}-1}, x_{2 n_{k}-2}\right)+d\left(x_{2 n_{k}-2}, x_{2 m_{k}}\right) .
\end{aligned}
$$

Taking the limit as $k \rightarrow \infty$ and using (2.9), we conclude

$$
\begin{equation*}
\lim _{k \rightarrow \infty} d\left(x_{2 n_{k}-1}, x_{2 m_{k}}\right)=\epsilon . \tag{2.16}
\end{equation*}
$$

Again, from (2.15), we obtain

$$
\epsilon \leq d\left(x_{2 n_{k}}, x_{2 m_{k}}\right) \leq d\left(x_{2 n_{k}}, x_{2 m_{k}+1}\right)+d\left(x_{2 m_{k}+1}, x_{2 m_{k}}\right) .
$$

Taking the limit as $k \rightarrow \infty$ and using (2.9), we see that

$$
\begin{equation*}
\epsilon \leq \lim _{k \rightarrow \infty} d\left(x_{2 n_{k}}, x_{2 m_{k}+1}\right) \tag{2.17}
\end{equation*}
$$

The contraction condition (2.2) yields

$$
\begin{aligned}
\phi d\left(x_{2 n_{k}}, x_{2 m_{k}+1}\right)= & \phi d\left(g x_{2 n_{k}-1}, f x_{2 m_{k}}\right) \\
\leq & \phi \max \left\{d\left(x_{2 n_{k}-1}, x_{2 m_{k}}\right), d\left(x_{2 n_{k}}, x_{2 n_{k}-1}\right), d\left(x_{2 m_{k}+1}, x_{2 m_{k}}\right)\right\} \\
& -\psi \max \left\{d\left(x_{2 n_{k}-1}, x_{2 m_{k}}\right), d\left(x_{2 n_{k}}, x_{2 n_{k}-1}\right), d\left(x_{2 m_{k}+1}, x_{2 m_{k}}\right)\right\} .
\end{aligned}
$$

Taking the limit as $k \rightarrow \infty$ and using the continuity of ϕ, ψ and using (2.9), (2.16), and (2.17), we get

$$
\phi \epsilon \leq \phi \lim _{k \rightarrow \infty} d\left(x_{2 n_{k}}, x_{2 m_{k}+1}\right) \leq \phi \epsilon-\psi \epsilon
$$

Therefore, $\psi \epsilon=0$, and hence $\epsilon=0$ which is 1a contradiction since $\epsilon>0$. Hence $\left(x_{2 n}\right)$ is a left-Cauchy sequence. In a similar manner we can prove that $\left(x_{2 n}\right)$ is a right-Cauchy sequence.

Since (X, d) is a complete quasi metric space, then $\left(x_{n}\right)$ converges to some element $u \in X$. Therefore any subsequence of $\left(x_{n}\right)$ also converges to u. Thus the subsequences $\left(x_{2 n}\right)$ and $\left(x_{2 n+1}\right)$ also converge to u. Since $\left(x_{2 n}\right)$ is a sequence in A, A is a closed subset of X and $\lim _{n \rightarrow \infty} x_{2 n}=u$, then $u \in A$. Also, since $\left(x_{2 n+1}\right)$ is a sequence in B, B is a closed subset of X and $\lim _{n \rightarrow \infty} x_{2 n+1}=u$, then $u \in B$.

By using the continuity of f, we get

$$
\lim _{n \rightarrow \infty} d\left(x_{n}, f u\right)=\lim _{n \rightarrow \infty} d\left(f x_{n-1}, f u\right)=0 \text { and } \lim _{n \rightarrow \infty} d\left(f u, x_{n}\right)=\lim _{n \rightarrow \infty} d\left(f u, f x_{n-1}\right)=0 .
$$

Hence

$$
\lim _{n \rightarrow \infty} d\left(f u, x_{n}\right)=\lim _{n \rightarrow \infty} d\left(x_{n}, f u\right)=0 .
$$

Thus $\left(x_{n}\right)$ converges to $f u$. By uniqueness of the limit, we have $f u=u$. So u is a fixed point of f in $A \cap B$.

Now, since $u \preceq u$, then from (2.2), we get

$$
\phi d(g u, u)=\phi d(g u, f u)
$$

$$
\begin{aligned}
\leq & \phi \max \{d(u, u), d(g u, u), d(f u, u)\} \\
& -\psi \max \{d(u, u), d(g u, u), d(f u, u)\} .
\end{aligned}
$$

Thus $\phi d(g u, u) \leq \phi d(g u, u)-\psi d(g u, u)$. Hence $\psi d(g u, u)=0$, and so $d(g u, u)=0$. Therefore $g u=u$. Hence u is a common fixed point for f and g in $A \cap B$.

Remark 2.5. The previous theorem is still correct if we choose the function $\psi:[0, \infty) \rightarrow[0, \infty)$ just as a continuous function.

Corollary 2.6. Let (X, \preceq) be a partially ordered set and suppose that (X, d) is a complete quasimetric space. Let A, B be two nonempty closed subsets of X with respect to the topology induced by d with $X=A \cup B$ and $A \cap B \neq \phi$. Let $f: A \cup B \rightarrow A \cup B$ such that $f x \preceq f^{2} x$ for all $x \in X$ with $f(A) \subseteq B, f(B) \subseteq A$. Let ϕ, ψ be altering distance functions. Also suppose that

$$
\phi d(f x, f y) \leq \phi \max \{d(x, y), d(f x, x), d(f y, y)\}-\psi \max \{d(x, y), d(f x, x), d(f y, y)\}
$$

for all comparative $x, y \in X$ with $x \in A, y \in B$ or $x \in B, y \in A$. Also,

1. suppose that there exists $x_{0} \in A$ such that $x_{0} \preceq f x_{0}$,
2. if f or g is continuous.

Then f and g have a common fixed point in $A \cap B$.
Proof. It follows from Theorem 2.4 by taking $g=f$.
Corollary 2.7. Let (X, \preceq) be a partially ordered set and suppose that (X, d) is a complete quasimetric space. Let $f, g: X \rightarrow X$ such that the pair f and g are weakly increasing mappings. Let ϕ, ψ be an altering distance functions. Moreover, suppose that

$$
\phi d(f x, g y) \leq \phi \max \{d(x, y), d(f x, x), d(g y, y)\}-\psi \max \{d(x, y), d(f x, x), d(g y, y)\}
$$

for all comparative $x, y \in X$, and

$$
\phi d(g x, f y) \leq \phi \max \{d(x, y), d(g x, x), d(f y, y)\}-\psi \max \{d(x, y), d(g x, x), d(f y, y)\}
$$

for all comparative $x, y \in X$. Also,

1. suppose that there exists $x_{0} \in A$ such that $x_{0} \preceq f x_{0}$,
2. if f or g is continuous.

Then f and g have a common fixed point in $A \cap B$.
Proof. It follows from Theorem 2.4 by taking $A=B=X$.
By replacing g by f and taking $A=B=X$ in Theorem 2.4 we get the following result.
Corollary 2.8. Let (X, \preceq) be a partially ordered set and suppose that (X, d) is a complete quasimetric space. Let $f: X \rightarrow X$ such that $f x \preceq f^{2} x$. Let ϕ, ψ be an altering distance functions. Moreover, suppose that

$$
\phi d(f x, f y) \leq \phi \max \{d(x, y), d(f x, x), d(f y, y)\}-\psi \max \{d(x, y), d(f x, x), d(f y, y)\}
$$

for all comparative $x, y \in X$. Also,

1. suppose that there exists $x_{0} \in A$ such that $x_{0} \preceq f x_{0}$,
2. if f or g is continuous.

Then f and g have a common fixed point in $A \cap B$.
If we define $\phi:[0, \infty) \rightarrow[0, \infty)$ by $\phi(t)=t$ and $\psi:[0, \infty) \rightarrow[0, \infty)$ by $\psi(t)=(1-k) t, k \in[0,1)$, then we get the following result.

Theorem 2.9. Let (X, \preceq) be a partially ordered set and suppose that (X, d) is a complete quasimetric space. Let A, B be two nonempty closed subsets of X with respect to the topology induced by d with $X=A \cup B$ and $A \cap B \neq \phi$. Let $f, g: A \cup B \rightarrow A \cup B$ such that the pair (f, g) is (A, B)-weakly increasing with $f(A) \subseteq B, g(B) \subseteq A$. Suppose that

$$
d(f x, g y) \leq k \max \{d(x, y), d(f x, x), d(g y, y)\}
$$

for all comparative $x, y \in X$ with $x \in A, y \in B$, and

$$
d(g x, f y) \leq k \max \{d(x, y), d(g x, x), d(f y, y)\}
$$

for all comparative $x, y \in X$ with $x \in B, y \in A$. Also,

1. suppose that there exists $x_{0} \in A$ such that $x_{0} \preceq f x_{0}$,
2. if f or g is continuous.

Then f and g have a common fixed point in $A \cap B$.
Corollary 2.10. Let (X, \preceq) be a partially ordered set and suppose that (X, d) is a complete quasimetric space. Let A, B be two nonempty closed subsets of X with respect to the topology induced by d with $X=A \cup B$ and $A \cap B \neq \phi$. Let $f: A \cup B \rightarrow A \cup B$ such that $f x \preceq f^{2} x$ forall $x \in X$ with $f(A) \subseteq B, f(B) \subseteq A$. Suppose that

$$
d(f x, f y) \leq k \max \{d(x, y), d(f x, x), d(f y, y)\}
$$

for all comparative $x, y \in X$ with $x \in A, y \in B$ or $x \in B, y \in A$. Also,

1. suppose that there exists $x_{0} \in A$ such that $x_{0} \preceq f x_{0}$,
2. if f or g is continuous.

Then f and g have a common fixed point in $A \cap B$.
Proof. The proof follows from Theorem 2.9 by taking $g=f$.
Corollary 2.11. Let (X, \preceq) be a partially ordered set and suppose that (X, d) is a complete quasimetric space. Let $f, g: X \rightarrow X$ such that the pair f and g are weakly increasing. Suppose that

$$
d(f x, g y) \leq k \max \{d(x, y), d(f x, x), d(g y, y)\}
$$

for all comparative $x, y \in X$, and

$$
d(g x, f y) \leq k \max \{d(x, y), d(g x, x), d(f y, y)\}
$$

for all comparative $x, y \in X$. Also,

1. suppose that there exists $x_{0} \in A$ such that $x_{0} \preceq f x_{0}$,
2. if f or g is continuous.

Then f and g have a common fixed point in $A \cap B$.
Proof. It follows from Theorem 2.9 by taking $A=B=X$
If we take $g=f$ and $A=B=X$ in Theorem 2.9, then we get the following result.
Corollary 2.12. Let (X, \preceq) be a partially ordered set and suppose that (X, d) is a complete quasimetric space. Let $f: X \rightarrow X$ such that $f x \preceq f^{2} x \forall x \in X$. Suppose that

$$
d(f x, f y) \leq k \max \{d(x, y), d(f x, x), d(f y, y)\}
$$

for all comparative $x, y \in X$, and

1. suppose that there exists $x_{0} \in A$ such that $x_{0} \preceq f x_{0}$,
2. if f or g is continuous.

Then f and g have a common fixed point in $A \cap B$.

3. Common fixed point theorems in G-metric spaces

Theorem 3.1. Let (X, \preceq) be a partially ordered set and suppose that there exists a G-metric on X such that (X, G) is a complete G-metric space. Let A, B be two nonempty closed subsets of X with respect to the topology induced by G with $X=A \cup B$. Let $f, g: A \cup B \rightarrow A \cup B$ be two mappings such that the pair (f, g) is (A, B)-weakly increasing with $f(A) \subseteq B, g(B) \subseteq A$. Let ϕ and ψ be an altering distance functions. Moreover, suppose that

$$
\begin{aligned}
\phi G(f x, g y, g y) \leq & \phi \max \{G(x, y, y), G(f x, x, x), G(g y, y, y)\} \\
& -\psi \max \{G(x, y, y), G(f x, x, x), G(g y, y, y)\}
\end{aligned}
$$

for all comparative $x, y \in X$ with $x \in A, y \in B$, and

$$
\begin{aligned}
\phi G(g x, f y, f y) \leq & \phi \max \{G(x, y, y), G(g x, x, x), G(f y, y, y)\} \\
& -\psi \max \{G(x, y, y), G(g x, x, x), G(f y, y, y)\}
\end{aligned}
$$

for all comparative $x, y \in X$ with $x \in B, y \in A$. Also

1. suppose that there exists $x_{0} \in A$ such that $x_{0} \preceq f x_{0}$,
2. if f or g is continuous.

Then f and g have a common fixed point in $A \cap B$.
Proof. Let $d: X \times X \rightarrow[0, \infty)$ defined by $d(x, y)=G(x, y, y)$ for all comparative $x, y \in X$ with $x \in A, y \in B$ and $d(y, x)=G(y, x, x)$ for all comparative $x, y \in X$ with $x \in A, y \in B$. Then by Theorem 1.14, (X, d) is a quasi metric space. From the contractive conditions we have

$$
\phi d(f x, g y) \leq \phi \max \{d(x, y), d(f x, x), d(g y, y)\}-\psi \max \{d(x, y), d(f x, x), d(g y, y)\}
$$

for all comparative $x, y \in X$ with $x \in A, y \in B$, and

$$
\phi d(g x, f y) \leq \phi \max \{d(x, y), d(g x, x), d(f y, y)\}-\psi \max \{d(x, y), d(g x, x), d(f y, y)\}
$$

for all comparative $x, y \in X$ with $x \in B, y \in A$. By Theorem 2.4, f and g have a common fixed point in $A \cap B$.

Theorem 3.2. Let (X, \preceq) be a partially ordered set and suppose that there exists a G-metric on X such that (X, G) is a complete G-metric space. Let A and B be two nonempty closed subsets of X with respect to the topology induced by G with $X=A \cup B$. Let $f, g: A \cup B \rightarrow A \cup B$ be two mappings such that the pair (f, g) is (A, B)-weakly increasing with $f(A) \subseteq B$ and $g(B) \subseteq A$. Suppose that there exists $r \in[0,1)$ such that

$$
G(f x, g y, g y) \leq k \max \{G(x, y, y), G(f x, x, x), G(g y, y, y)\}
$$

for all comparative $x, y \in X$ with $x \in A, y \in B$, and

$$
G(g x, f y, f y) \leq k \max \{G(x, y, y), G(g x, x, x), G(f y, y, y)\}
$$

for all comparative $x, y \in X$ with $x \in B, y \in A$. Also,

1. suppose that there exists $x_{0} \in A$ such that $x_{0} \preceq f x_{0}$,
2. if f or g is continuous.

Then f and g have a common fixed point in $A \cap B$.
Proof. As in the proof of Theorem 3.1, we consider the function $d: X \times X \rightarrow[0, \infty)$ such that $d(x, y)=G(x, y, y)$ for all comparative $x, y \in X$ with $x \in A, y \in B$ and $d(y, x)=G(y, x, x)$ for all comparative $x, y \in X$ with $x \in A, y \in B$. Then by Theorem $1.14,(X, d)$ is a quasi metric space. From the contractive conditions we have

$$
d(f x, g y) \leq k \max \{d(x, y), d(f x, x), d(g y, y)\}
$$

for all comparative $x, y \in X$ with $x \in A, y \in B$, and

$$
d(g x, f y) \leq k \max \{d(x, y), d(g x, x), d(f y, y)\}
$$

for all comparative $x, y \in X$ with $x \in B, y \in A$. By Theorem [2.9, f and g have a common fixed point in $A \cap B$.

Remark 3.3. We can prove Theorem 3.2 from Theorem 3.1 by choosing $\phi t=t$ and $\psi t=(1-k) t$, where $0 \leq k<1$.

Next, we introduce an example to support our result.
Example 3.4. Let $X=\{0,1,2,3, \cdots\}$ and define a relation \preceq on X by $a, b \in X, a \preceq b$ iff $a-b \geq 0$ and let A and B be two subsets of X such that $A=\{0,2,4,6, \cdots\}, B=\{0,1,3,5, \cdots\}$.

Define $d: X \times X \rightarrow[0, \infty)$ by $d(x, y)= \begin{cases}0, & x=y ; \\ x+2 y, & x \neq y\end{cases}$
Let $f, g: A \cup B \rightarrow A \cup B$ be defined by $f x=\left\{\begin{array}{ll}0, & x=0,1,2 ; \\ x-3, & x \geq 3 .\end{array} \quad g x= \begin{cases}0, & x=0,1 ; \\ x-1, & x \geq 2 .\end{cases}\right.$
Also, define $\phi, \psi:[0, \infty) \rightarrow[0, \infty)$ by $\phi t=t^{2}, \psi t=t$. Then
(1) (X, d, \preceq) is a partially ordered complete quasi metric space;
(2) A and B are closed subsets of X with respect to the topology induced by d;
(3) the pare (f, g) is (A, B)-weakly increasing with $f(A) \subseteq B, g(B) \subseteq A$;
(4) ϕ and ψ are altering distance functions;
(5) there is $x_{0} \in X$ such that $x_{0} \preceq f x_{0}$;
(6)

$$
\begin{equation*}
\phi d(f x, g y) \leq \phi \max \{d(x, y), d(f x, x), d(g y, y)\}-\psi \max \{d(x, y), d(f x, x), d(g y, y)\} \tag{3.1}
\end{equation*}
$$

for all comparative $x, y \in X$ with $x \in A, y \in B$, and

$$
\begin{equation*}
\phi d(g x, f y) \leq \phi \max \{d(x, y), d(g x, x), d(f y, y)\}-\psi \max \{d(x, y), d(g x, x), d(f y, y)\} \tag{3.2}
\end{equation*}
$$

for all comparative $x, y \in X$ with $x \in B, y \in A$.
Proof. The proofs of (1), (2), (3), (4), and (5) are clear. We show (6).
Let $x \in A, y \in B$. Then we have the following cases:
Case (I): If $x \in\{0,1,2\}$ and $y \in\{0,1\}$, then $f x=0$ and $g y=0$. Hence the left hand side of (3.1) is equal to 0 and so (3.1) is satisfied.
Case (II): If $x \geq 3$ and $y \geq 2$, then
Subcase (1): If $x-3=y-1$, then $\phi d(f x, g y)=[d(x-3, y-1)]^{2}=[0]^{2}=0$ and so (3.1) is satisfied.
Subcase (2): If $x-3 \neq y-1$, then

$$
\phi d(f x, g y)=[d(x-3, y-1)]^{2}=[x+2 y-5]^{2}=x^{2}+4 y^{2}+25+4 x y-10 x-20 y .
$$

On the other hand

$$
\begin{aligned}
& {[\max \{d(x, y), d(f x, x), d(g y, y)\}]^{2}-\max \{d(x, y), d(f x, x), d(g y, y)\}} \\
& \quad=[\max \{d(x, y), d(x-3, x), d(y-1, y)\}]^{2}-\max \{d(x, y), d(x-3, x), d(y-1, y)\} \\
& \quad=[\max \{x+2 y, 2 x-3,2 y-1\}]^{2}-\max \{x+2 y, 2 x-3,2 y-1\} .
\end{aligned}
$$

If $\max \{x+2 y, 2 x-3,2 y-1\}=x+2 y$, then the right hand side is $x^{2}+4 y^{2}+4 x y-x-2 y$. Assume to the contrary that $x^{2}+4 y^{2}+25+4 x y-10 x-20 y>x^{2}+4 y^{2}+4 x y-x-2 y$. Then we have $9 x+18 y<25$ a contradiction since $x \geq 3$ and $y \geq 2$. Thus we have $x^{2}+4 y^{2}+25+4 x y-10 x-20 y \leq$ $x^{2}+4 y^{2}+4 x y-x-2 y$. If $\max \{x+2 y, 2 x-3,2 y-1\}=2 x-3$ or $2 y-1$, then the result is clear since if $a, b \in \mathbb{N}$ with $a<b$, then $a^{2}-a<b^{2}-b$. Thus (3.1) is satisfied. In a similar manner we can show that (3.2) is satisfied. Hence all hypothesis of Theorem 3.1 hold true. Therefore f and g have a common fixed point in $A \cap B$. In this example the common fixed point of f and g in $A \cap B$ is 0 .

Acknowledgment

The authors would like to acknowledge the grant: UKM Grant DIP-2014-034 and Ministry of Education, Malaysia grant FRGS/1/2014/ST06/UKM/01/1 for financial support.

References

[1] R. P. Agarwal, M. A. El-Gebeily, D. O'Regan, Generalized contractions in partially ordered metric spaces, Appl. Anal., 87 (2008), 109-116. 1. 1.1
[2] R. P. Agarwal. E. Karapınar, A. F. Roldán-López-de-Hierro, Last remarks on G-metric spaces and related fixed point theorems, Rev. R. Acad. Cienc. Exactas Fs. Nat. Ser. A Math. RACSAM, 110 (2016), 433-456. 1
[3] I. Alyun, H. Simsek, Some fixed point theorems on orderd metric spaces and applications, Fixed Point Theory Appl., 2010 (2010), 17 pages. 2.1
[4] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133-181. 1
[5] M. Jleli, B. Samet, Remarks on G-metric spaces and fixed point theorems, Fixed Point Theory Appl., 2012 (2012), 7 pages. 1, 1.3, 1.4, 1.5, 1.6, 1.7, 1.14
[6] M. S. Khan, M. Swaleh, S. Sessa, Fixed point theorems by altering distances between the points, Bull. Austral. Math. Soc., 30 (1984), 1-9. 2.3
[7] N. V. Luong, N. X. Thuan, Coupled fixed point theorems in partially ordered G-metric spaces, Math. Comput. Modelling, 55 (2012), 1601-1609. 1
[8] Z. Mustafa, Common fixed points of weakly compatible mappings in G-metric spaces, Appl. Math. Sci. (Ruse), 6 (2012), 4589-4600.
[9] Z. Mustafa, Some new common fixed point theorems under strict contractive conditions in G-metric spaces, J. Appl. Math., 2012 (2012), 21 pages.
[10] Z. Mustafa, M. Khandaqji, W. Shatanawi, Fixed point results on complete G-metric spaces, Studia Sci. Math. Hungar., 48 (2011), 304-319.
[11] Z. Mustafa, H. Obiedat, A fixed point theorem of Reich in G-metric spaces, Cubo, 12 (2010), 83-93.
[12] Z. Mustafa, H. Obiedat, F. Awawdeh, Some fixed point theorem for mapping on complete G-metric spaces, Fixed Point Theory Appl., 2008 (2008), 12 pages.
[13] Z. Mustafa, W. Shatanawi, M. Bataineh, Existence of fixed point results in G-metric spaces, Int. J. Math. Math. Sci., 2009 (2009), 10 pages.
[14] Z. Mustafa, B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal., 7 (2006), 289-297. 1, 1, 1.8, 1.9, 1.10, 1.11, 1.12, 1.13
[15] Z. Mustafa, B. Sims, Fixed point theorems for contractive mappings in complete G-metric spaces, Fixed Point Theory Appl., 2009 (2009), 10 pages.
[16] B. Samet, C. Vetro, F. Vetro, Remarks on G-metric spaces, Int. J. Anal., 2013 (2013), 6 pages. 1
[17] W. Shatanawi, M. Postolache, Some fixed-point results for a G-weak contraction in G-metric spaces, Abstr. Appl. Anal., 2012 (2012), 19 pages.
[18] W. Shatanawi, M. Postolache, Common fixed point results for mappings under nonlinear contraction of cyclic form in ordered metric spaces, Fixed Point Theory Appl., 2013 (2013), 13 pages. $1,2.2$
[19] W. A. Wilson, On quasi-metric spaces, Amer. J. Math., 53 (1931), 675-684. 1

[^0]: *Corresponding author
 Email addresses: wshatanawi@psu.edu.sa (Wasfi Shatanawi), msn@ukm.my (Mohd Salmi MD Noorani), h.alsamer@gmail.com (Habes Alsamir), anwerbataihah@gmail.com (Anwar Bataihah)

