
Available online at www.isr-publications.com/jmcs
J. Math. Computer Sci. 16 (2016), 364–371

Research Article

A commensal symbiosis model with Holling type functional
response

Runxin Wua,∗, Lin Lia, Xiaoyan Zhoub

aCollege of Mathematics and Physics, Fujian University of Technology, Fuzhou, Fujian, 350014, P. R. China.

bPublic Foundation Department, Fuzhou Polytechnic, Fuzhou, Fujian, 352300, P. R. China.

Abstract

A two species commensal symbiosis model with Holling type functional response takes the form

dx

dt
= x

(
a1 − b1x+

c1y
p

1 + yp

)
,

dy

dt
= y(a2 − b2y)

is investigated, where ai, bi, i = 1, 2, p and c1 are all positive constants, p ≥ 1. Local and global
stability property of the equilibria is investigated. We also show that depending on the ratio of a2

b2
,

the first component of the positive equilibrium x∗(p) may be the increasing or decreasing function
of p or independent of p. Our study indicates that the unique positive equilibrium is globally stable
and the system always permanent. c©2016 All rights reserved.
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1. Introduction

Though much progress has been made on the mutualism model ([2, 4–7, 9–15, 17–19, 23, 24, 27–
29]), there are still only few work on the commensal symbiosis model([16, 20, 21, 25, 26]). Sun and
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Wei [21] first time proposed a intraspecific commensal model:

dx

dt
= r1x

(
k1 − x+ ay

k1

)
,

dy

dt
= r2y

(
k2 − y
k2

)
.

(1.1)

They investigated the local stability of all equilibrium points. However, they did not give any
information about the global dynamic behaviors of the system.

Han and Chen [16] incorporated the feedback control variables to the commensal symbiosis model
system, and proposed the following model:

ẋ = x (b1 − a11x+ a12y − α1u1) ,

ẏ = y (b2 − a22y − α2u2) ,

u̇1 = −η1u1 + a1x,

u̇2 = −η2u2 + a2y.

(1.2)

They showed that system (1.2) admits a unique globally stable positive equilibrium.
Xie et al. [25] proposed the following discrete commensal symbiosis model

x1(k + 1) = x1(k) exp {a1(k)− b1(k)x1(k) + c1(k)x2(k)} ,
x2(k + 1) = x2(k) exp {a2(k)− b2(k)x2(k)} .

(1.3)

They investigated the positive ω-periodic solution of the system (1.3).
Xue et al. [26] further incorporate the delay to system (1.3), and proposed the following discrete

commensalism system

x(n+ 1) = x(n) exp

[
r1(n)

(
1− x(n− τ1)

K1(n)
+ α(n)

y(n− τ2)
K1(n)

)]
,

y(n+ 1) = y(n) exp

[
r2(n)

(
1− y(n− τ3)

K2(n)

)]
.

(1.4)

They investigated the almost periodic solution of the system (1.4).
Miao et al. [20] studied the persistent property of the following periodic Lotka-Volterra commensal

symbiosis model with impulsive.

dx1
dt

= x1 (a1(t)− b1(t)x1 + c1(t)x2) ,

dx2
dt

= x2 (a2(t)− b2(t)x2) , t 6= τk,

xi(τ
+
k ) = (1 + hik)xi(τk), t = τk, k = 1, 2, · · · .

(1.5)

Their results indicate that impulsive is one of the important reasons that can change the long time
behaviors of species.

It brings to our attention that all of the above system are based on the traditional Lotka-Volterra
model, which made the assumption that the influence of the second species to the first one is linearize.
This may not be suitable. Now, if we assume that the functional response between two species is of
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Holling type ([1, 3, 8, 22, 30]), then we could establish the following two species commensal symbiosis
model

dx

dt
= x

(
a1 − b1x+

c1y
p

1 + yp

)
,

dy

dt
= y(a2 − b2y),

(1.6)

where ai, bi, i = 1, 2, p and c1 are all positive constants, p ≥ 1.
The aim of this paper is to investigate the local and global stability property of the possible

equilibria of system (1.6). We arrange the paper as follows: In the next section, we will investigate the
existence and local stability property of the equilibria of system (1.6). In Section 3, by constructing
some suitable Dulac function, we will investigate the global stability property of the system. In
Section 4, we will investigate the relationship of the x∗ and p. In Section 5, two examples together
with their numerical simulations are presented to show the feasibility of our main results.

2. The existence and local stability of the equilibria

The equilibria of system (1.6) is determined by the system

x

(
a1 − b1x+

c1y
p

1 + yp

)
= 0,

y(a2 − b2y) = 0.

(2.1)

Hence, system (1.6) admits four possible equilibria, A0(0, 0), A1

(
a1
b1
, 0
)

, A2

(
0, a2

b2

)
and A3 (x∗, y∗),

where

x∗ =
a1(

a2
b2

)p + c1(
a2
b2

)p + a1

b1

(
1 + (a2

b2
)p
) , y∗ =

a2
b2
. (2.2)

Concerned with the local stability property of the above four equilibria, we have

Theorem 2.1. A0(0, 0), A1(
a1
b1
, 0) and A2

(
0, a2

b2

)
are unstable; A3 (x∗, y∗) is locally stable.

Proof. The Jacobian matrix of the system (1.6) is calculated as

J(x, y) =

a1 − 2b1x+
c1y

p

1 + yp
c1pxy

p−1

(1 + yp)2

0 −2b2y + a2

 . (2.3)

Then the Jacobian matrix of the system (1.6) about the equilibrium A0(0, 0), A1(
a1
b1
, 0) and A2(0,

a2
b2

)
are given by [

a1 0
0 a2

]
, (2.4)[

−a1 0
0 a2

]
, (2.5)

and a1 +
c1(

a2
b2

)p

1 + (a2
b2

)p
0

0 −a2

 (2.6)



R. Wu, L. Li, X. Zhou, J. Math. Computer Sci. 16 (2016), 364–371 367

respectively. One could easily see that all of the above three matrix has at least one positive eigen-
values, which means that A0(0, 0), A1(

a1
b1
, 0) and A2(0,

a2
b2

) are all unstable.
The Jacobian matrix about the equilibrium A3 is given by−a1(a2b2 )p + c1(

a2
b2

)p + a1

1 + (a2
b2

)p
F12

0 −a2

 (2.7)

where

F12 =
c1pb2

(
a1(

a2
b2

)2p + c1(
a2
b2

)2p + a1(
a2
b2

)p
)

b1a2

(
1 + (a2

b2
)p
)3 . (2.8)

The eigenvalues of the above matrix are λ1 = −
a1(

a2
b2

)p + c1(
a2
b2

)p + a1

1 + (a2
b2

)p
< 0, λ2 = −a2 < 0. Hence,

A3(x
∗, y∗) is locally stable.

This ends the proof of Theorem 2.1.

3. Global stability of the positive equilibrium

Theorem 2.1 shows that the system always admits a positive equilibrium, and this equilibrium
is locally stable. One interesting thing is whether the system (1.6) could admits cycle or not, which
means that the two species could be coexistent in a periodic oscillation form. The aim of this section
is to show that such phenomenon could not be happened.

Lemma 3.1 ([28]).
dy

dt
= y(a− by) (3.1)

has a unique globally attractive positive equilibrium y∗ = a
b
.

Theorem 3.2. A3

(
x∗, y∗

)
is globally stable.

Proof. Firstly, we prove that every solution of system (1.6) that starts in R2
+ is uniformly bounded.

Noting that the second equation of (1.6) takes the form

dy

dt
= y(a2 − b2y). (3.2)

By applying Lemma 3.1 to system (3.2), we know that system (3.2) has a unique globally attractive
positive equilibrium y∗ = a2

b2
.

It follows from the first equation of system (1.6) that

dx

dt
≤ x(a1 − b1x+ c1),

and so

lim sup
t→+∞

x(t) ≤ a1 + c1
b1

. (3.3)

Hence, there exists a ε > 0 such that for all t > T

x(t) <
a1 + c1
b1

+ ε, y(t) <
a2
b2

+ ε. (3.4)
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Let D =
{

(x, y) ∈ R2
+ : x < a1+c1

b1
+ ε, y < a2

b2
+ ε
}
. Then every solution of system (1.6) starts in

R2
+ is uniformly bounded on D. Also, from Theorem 2.1, there is a unique local stable positive

equilibrium A3(x
∗, y∗). To show that A3(x

∗, y∗) is globally stable, it is enough to show that the
system admits no limit cycle in the area D. Let’s consider the Dulac function u(x, y) = x−1y−1, then

∂(uP )

∂x
+
∂(uQ)

∂y
= −b1y−1 − b2x−1 < 0,

where P (x, y) = x

(
a1 − b1x+

c1y
p

1 + yp

)
, Q(x, y) = y(a2 − b2y). By Dulac Theorem [29], there is no

closed orbit in area D. Consequently, A3(x
∗, y∗) is globally asymptotically stable.

This completes the proof of Theorem 3.2.

4. Relationship of x∗ and p

Since we are interesting in the influence of functional response to the dynamic behaviors of
the system (1.6). From the previous section, we had showed that the functional response has no
influence on the persistent property of the system, since the system always admits a unique global
stable positive equilibrium, which means that the system is permanent.

To further investigate the influence of the functional response, bring attention to the expression
of x∗ and y∗, one could see that y∗ is independent of p, which means that the functional response
has no influence on the final density of the second species. However, x∗ is the function of p, hence it
seems interesting to investigate the relationship of x∗ and p.

Noting that

dx∗

dp
=

c1

(
a2
b2

)p
ln a2

b2

b1(1 +
(

a2
b2

)p
)2
. (4.1)

Then

(1) if a2 > b2, then ln a2
b2
> 0, and so dx∗

dp
> 0, consequently, x∗(p) is the strict increasing function

of p;

(2) if a2 = b2, then ln a2
b2

= 0, and so dx∗

dp
= 0, consequently, x∗(p) will not be changed with p;

(3) if a2 < b2, then ln a2
b2
< 0, and so dx∗

dp
< 0, consequently, x∗(p) is the strict decreasing function

of p.

5. Numerical simulations

Now let us consider the following examples.

Example 5.1. Consider the following system

dx

dt
= x

(
1− 2x+

y

1 + y

)
,

dy

dt
= y(1− 2y).

(5.1)
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In this system, corresponding to system (1.6), we take a1 = a2 = c1 = 1, b1 = b2 = 2. From
Theorem 3.2, the unique positive equilibrium

(
2
3
, 1
2

)
is globally stable. Numeric simulation (Figure

1) also support this assertion.

Figure 1: Numerical simulations of system (5.1) with the initial conditions
(x(0), y(0)) = (0.4, 2), (1, 0.3), (0.02, 0.02), (1, 2) and (0.1, 2), respectively.

Example 5.2. Consider the following system

dx

dt
= x

(
1− 2x+

yp

1 + yp

)
,

dy

dt
= y(a2 − 2y).

(5.2)

(1) Take a2 = 1. In this case, x∗(p) = 1
2

2(1
2
)p + 1

1 + (1
2
)p
. Figure 2 shows that x∗(p) is the decreasing

function of p.

(2) Take a2 = 2. In this case, x∗(p) = 3
4
. Obviously, x∗(p) is independent of p;

(3) Take a2 = 3. In this case, x∗(p) = 1
2

2(3
2
)p + 1

1 + (3
2
)p
. Figure 3 shows that x∗(p) is the increasing

function of p.

6. Conclusion

We propose a two species commensal symbiosis model with Holling type functional response,
our study shows that the dynamic behaviors of the system is similar to the Lotka-Volterra type
commensal symbiosis model, i.e., the system admits a unique globally stable positive equilibrium.

We mentioned here that the analysis method of this paper could not be applied to the case
0 < p < 1, and we leave this for future investigation.
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Figure 2: Numerical simulations of x∗(p), where p ∈ [0, 10].

Figure 3: Numerical simulations of x∗(p), where p ∈ [0, 20].
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