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Abstract

The existence of three distinct weak solutions for a class of perturbed damped vibration problems
with nonlinear terms depending on two real parameters is investigated. Our approach is based on
variational methods. (©2016 All rights reserved.
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1. Introduction

Consider the following perturbed damped vibration problem

—a(t) — q(t)alt) + A()ult) = AVE(t ut)) + uVG(Hut)  ae. tel0,T), 1)
uw(0) — w(T) = a(0) — 4(T) = 0, '

where T > 0, ¢ € L'(0,T;R), Q(t) = [} q(s)ds for all t € [0,T], Q(T) =0, A: [0,7] — RV*VN is a
continuous map from the interval [0, T to the set of N-order symmetric matrices, A > 0, x> 0 and
F,G:[0,T] x RYN — R are measurable with respect to ¢, for all u € RY, continuously differentiable
in u, for almost every t € [0, T, satisfies the following standard summability condition
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EgmaX{IF(né)I’ IGCOLIVEC I VG, &I} € LY([0,T1) (1.2)
for any a > 0, and F(¢,0,...,0) = G(¢,0,...,0) =0 for all t € [0, T].

Assume that VF, VG are continuous in [0, 7] x RY, then the condition is satisfied.

As a special case of dynamical systems, Hamiltonian systems are very important in the study
of fluid mechanics, gas dynamics, nuclear physics and relativistic mechanics. Inspired by the mono-
graphs [21H23], the existence and multiplicity of periodic solutions for Hamiltonian systems have
been investigated in many papers (see [2, BH7, 13|, 14, 16, 17, 25H27] and the references therein).
For example, in [27] the authors obtained existence theorems for periodic solutions of a class of
unbounded non-autonomous non-convex subquadratic second order Hamiltonian systems by using
the minimax methods in critical point theory. In [13] Cordaro established a multiplicity result to
an eigenvalue problem related to second-order Hamiltonian systems, and proved the existence of an
open interval of positive eigenvalues in which the problem admits three distinct periodic solutions.
In [I6] Faraci studied the multiplicity of solutions of a second order non-autonomous system.

Very recently, some researchers have paid attention to the existence and multiplicity of solutions
for damped vibration problems, for instance, see [9, 10, 12, 28-31] and references therein. For
example, Chen in [9] [10] studied a class of non-periodic damped vibration systems with subquadratic
terms and with asymptotically quadratic terms, respectively, and obtained infinitely many nontrivial
homoclinic orbits by a variant fountain theorem developed recently by Zou [33]. Wu and Chen in
[30] based on variational principle presented three existence theorems for periodic solutions of a class
of damped vibration problems. In particular, the authors in [29] based on variational methods and
critical point theory studied the existence of one solution and multiple solutions for damped vibration
problems. In [31], the authors using critical point theory and variational methods investigated the
solutions of a Dirichlet boundary value problem for damped nonlinear impulsive differential equations.

In [T11, 18, 19 24] using variational methods and critical point theory the existence of multiple
solutions for a class of perturbed second-order impulsive Hamiltonian systems was discussed.

We also cite the paper [20] in which employing a critical point theorem (local minimum result)
for differentiable functionals, the existence of at least one non-trivial weak solution for a class of
impulsive damped vibration systems under an asymptotical behaviour of the nonlinear datum at
zero was proved.

In the present paper, motivated by [29], using two kinds of three critical points theorems obtained
in [3, 8] which we recall in the next section (Theorems and 2.2), we ensure the existence of at
least three solutions for the problem ; see Theorems and .

We also refer the reader to the papers [I], 4, [15] in which the existence of multiple solutions for
boundary value problems is ensured.

The present paper is arranged as follows. In Section [2] we recall some basic definitions and
preliminary results, while Section [3|is devoted to the existence of multiple solutions for the problem

D).

2. Preliminaries

Our main tools are three critical points theorems that we recall here in a convenient form. In
the first one, the coercivity of the functional ® — AV is required, in the second one a suitable sign
hypothesis is assumed. The first has been obtained in [8], and it is a more precise version of Theorem
3.2 of [3]. The second has been established in [3].

Theorem 2.1 ([8, Theorem 3.6 |). Let X be a reflexive real Banach space, ® : X — R be a coercive
continuously Gateauz differentiable and sequentially weakly lower semicontinuous functional whose
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Gateaux derivative admits a continuous inverse on X*, ¥ : X — R be a continuously Gateaux
differentiable functional whose Gateauz derivative is compact such that ®(0) = ¥(0) = 0.
Assume that there exist r > 0 and T € X, with r < ®(T) such that

SUPzed—1(—o00,r] \I’(Z') < \IJ(E) .

(a1) r o(7)’

(ag) for each X\ € A, := ( (g, ) the functional ® — \V is coercive.

Then, for each \ € A, the functional ® — AV has at least three distinct critical points in X .

Theorem 2.2 (3, Corollary 3.1], [4, Theorem 2.2]). Let X be a reflexive real Banach space, ® :
X — R be convex, coercive and continuously Gateaux differentiable functional whose derivative
admits a continuous inverse on X*, ¥ : X — R be a continuously Gateaux differentiable functional
whose derivative is compact, such that

1. infx ® = ®(0) = U(0) = 0;

2. for each A > 0 and for every x1, x5 € X which are local minima for the functional ® — AU and
such that ¥(xq1) > 0 and V(xy) > 0, one has

inf W(szy+ (1 —s)xe) > 0.
s€[0,1]

Assume that there are two positive constants ri,72 and T € X, with 2r; < ®(T) < 2, such that

(b ) Supx@b*l(—oo,rl) \If<£lj'> < EKIJ(E)
! r 30(z)’
(b ) Supxeéfl(foo,rg) \Ij<$) < l\Il(f)
? T 30(T)
30(T) | - r2 _
Th hle|-—=% , 2 . th tional
o fom e (2 ) { ST 0 MRS 1) § H

® — AU has at least three distinct critical points which lie in ®~'(—o0,1s).
We assume that the matrix A satisfies the following conditions:

(A1) A(t) = (aw(t)), k=1,...,N, 1 =1,..., N, is a symmetric matrix with ay € L*[0,T] for any
te0,7T];

(A2) there exists § > 0 such that (A(t)&, &) > 6|¢|? for any € € RY and a.e. t € [0,T], where (-, -)
denotes the inner product in R¥.

Let us recall some basic concepts. Denote
E = {u:[0,T] = RY| u is absolutely continuous, u(0) = u(T), @ € L*([0,T],R)},

with the inner product

< uv = /0 (), o(t)) + (u(t), v(t))]dt.
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The corresponding norm is defined by

T 1
Julle = ([ (@) + [u(®)P)it)” v ue E.
0
For every u,v € E, we define
T
<= [ eO),5(0) + X (A@u(e) o0,
0

and we observe that, by the assumptions (A1) and (A2), it defines an inner product in £. Then F
is a separable and reflexive Banach space with the norm

lu]| =< u,u -2 | YucE.

Obviously, E is a uniformly convex Banach space. Clearly, the norm | - || is equivalent to the
norm || - ||g (see [17]).
Since (E, || - ||) is compactly embedded in C([0,T], RY) (see [21]), there exists a positive constant
c such that
[ulloe < el ull; (2.1)

where ||l = maxcp,r | u(t) |
We use the following notations:

T
G = / e sup G(t,z)dt, te[0,T], V0 >0,
0

j21<0

and .
Gy = / G (t, z0)dt, YV zo € RV,
0

We mean by a (weak) solution of the problem (|I.1)), any function v € E such that
/OT eQO (u(t), v(t))dt + /OT eCO(A)u(t), v(t))dt — A /OT eCO(VF(t,u(t)),v(t))dt
— /OT CO(VG(t, u(t)),v(t))dt =0
for every v € E.

3. Main results

In order to introduce our first result, fix § > 0 and nonzero vector zo € RY such that

2ol2(2N_ llagslloe) fy @@t 5
T = :
/ eQ(t)F(ta xo)dt 62/ eQ(t) sup F(t, Zlf)dt
0 0 |z|<6
and pick
N T
AE A = |1’0|2<Zi,j:1 ”ainoo)fO QW dt 62

T ) T
2/ eCOF(t, z0)dt 202/ e?W sup F(t,z)dt
0 0

|z|<6
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and let .
62 — 202)\/ e?W sup F(t,z)dt
Oyc := min 0 l=1<6 ,
’ 2c2(GY
T
2o (S llaglloe) ST €@Odt — 23 / e (¢, o) dt
0
2G, ’
and
1

(3.1)

5/\,6' = min (5)\79,

max {O, 2¢? lim sup

|z|—o00 |.I'|2

where we read p/0 = 400, so that, for instance, 5,\,0 = +o00 when

lim sup 3

and G, = G’ = 0. Now, we formulate our main result.

Theorem 3.1. Suppose that the assumptions (A1) and (A2) hold. Assume that there exist a positive
constant 0 and and a non-zero vector xo € RN with 6 < ¢(& fOT eQ(t)dt)%]a;d such that

T T
/ eQ(t) sup F(t> x)dt / GQ(t)F(t, l‘o)dt
(B ) 0 |m|§9 < 1 0 .
! 02 ANy llaijlle) fg eQWat ENE ’

(By)  there exist functions hy,hy € LY(0,T,R) and two numbers o € [0,1), M > 0 such that

F(t
w < hy(t)|x]™ + hao(t) for all z € RY with |z| > M and a.e t € [0,T).
x
Then, for each X\ € A and for every function G : [0,T] x RN — R which is measurable with respect
tot, for all u € RY, continuously differentiable in u, for almost every t € [0,T), satisfying (1.2) and
the condition

. supepo,r) G(t, @)
lim sup

|x|—o00 |ZL’|2

there exists 6xq > 0 given by (3.1)) such that, for each u € [0, c|, the problem (1)) admits at least
three distinct weak solutions.

< 400,

Proof. Fix X as in the conclusion. Take X = E and define the functionals ®, ¥ : X — R as follows
1
D(u) = 3 ul”,

and
(u) = / COE(t,u(t) + 56 u)de
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for every uw € X. It is well known that U is a Gateaux differentiable functional whose Gateaux
derivative at the point u € X is the functional ¥'(u) € X*, given by

'(u)(v) = /0 ' eQ“><VF(t,u<t)),v(t))dt+g /0 TeQ“’(VG(t,u(t)),v(t))dt

for every v € X, and W' : X — X* is a compact operator. Moreover, ® is a Gateaux differentiable
functional whose Gateaux derivative at the point u € X is the functional ®'(u) € X*, given by

q)’(u)(v):/o eQ(t)(u(t),Q}(t))dt—f—/o O (A(t)u(t), v(t))dt

for every v € X. Since @' is uniformly monotone on X, coercive and hemicontinuous in X, applying
[32, Theorem 26. A] it admits a continuous inverse on X*. Furthermore, ® is sequentially weakly

0
lower semicontinuous. Put r = 5(—)2 and w(t) := xo for all t € [0,T]. It is easy to see that w € X
c

and, in particular, one has
1 T
—|$0|25/ QW0 < B(w —|m0| Z s 1oo) / Q0. (3.2)
0 i,7=1
This together with the condition § < ¢(d fOT QW dt)2|z,| ensures
0<r<d(w).
Bearing (2.1) in mind, we see that
o7(] —oo,r]) = {u € X; O(u) <1}

2
:{ueX; ||1;|| Sfr}
C{u € X; |u(t)] <0 for each t € [0,T]},

and it follows that

T
sup  U(u) = sup / eCO[F(t, u(t)) + HG(t, u(t))]dt
u€d—1(]—o0,r]) u€d1(]—o0,r]) JO A
’ u
< / e?W sup F(t,z)dt + ~G°.
0 |z|<6 A
So,
g p
sup  ¥(u) sup / COLF(t, u(t)) + =G (t, u(t)))dt
ued=1(|—o0,1]) _ ued—1(—o0r]) Jo A
T B T
g u
/ e?W sup F(t, z)dt + =G’
2J0 |z|<6 A
< 2c (3.3)

62 ’
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and

T u [T
/ eCOR(t, z0)dt + X/ LG (t, z0)dt
0 0 : (3.4)

1 N T
S0l (=i Naislleo) Jo e@®di

Y]

Since p < 94, one has

T
62 — 202)\/ e? sup F(t,z)dt
0

< |z|<0
K 2c2GY ’
that is,
! T
/ e? sup F(t,z)dt + ~G°
0 || <0 A _ 1
1(?)2 A
2°c
Furthermore,
T
2ol (S llaglloe) ST €@Odt — 23 / QO (1, o)t
< . ,
2G,,
that is,
g 1
/ COR(t, z0)dt + XGxO ]
0 fa—
) N pe > N
§|$0|2(Z IIaijlloo)/ Wt
ij=1 0
Then,
g H ~o r
/0 Q) |Sl|l<p9 F(t,x)dt + XG . / eCOF(t, z0)dt + %G%
= - 0
2t ol llalle) [ e
0

3,j=1

Hence from (3.3)—(3.5), we see that the condition (a;) of Theorem is fulfilled. Finally, since
[ < dxg, we can fix [ > 0 such that

supepo,r) G(t, @)

FE <,

lim sup
|z|—o0

1
and pl < 52 Therefore, there exists a function p € L(]0,T]) such that
¢

G(t,z) < lz[* + p(t)

for every t € [0,7] and z € R".
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Let
F(t
n(t, ) = w — Iy (t)|z]* — ha(t) for all ¢t € [0,7] and z € RV,
x
Let B(t) = sup n(t,x). Then, by (By),
|x|<M
0 if |z > M
nt @) < { B(t) if || < M
Thus
) M
0 if s > —
n(t, sz) < || M
pt) if0<s<—.
]
Therefore,

F(t,z) — F(t,0) :/1VF(t,sa:)-xds

_ /O l|[n(t, 52) + ha(£)s°]2]° + ha(t)|ds

< MB(t) + —— 1\ﬂvl‘”lhl(t) + [x]ha(t).
Consequently, for A > 0 we have
Lo " e p
O(u) — A\ (u) = §||u|| - e (F(t,u(t)) + XG(t’ u(t))dt
0

u(t)[*" ha (t) + Ju(t) ha(t) |dt

> = [ o0 [arsn +
=5l , a+1

T T
—A/'ﬂmFunmrwn/ ()Pt — ullols
0 0

1
> (5 = e [ul* = exflul™™ = caflull + e

for some constants ¢y, ¢o and ¢3. Since a € [0, 1), this follows lim (®(u) — AV(u)) = +o0, VA >0,

l[ul| =00

which means the functional ® — AV is coercive, and the condition (ay) of Theorem is satisfied.
From (3.3) and (3.5)) one also has

o (w) r
U(w)’ SUPg(z)<, V()

A€

Finally, since the weak solutions of the problem (1.1]) are exactly the solutions of the equation
&' (u) — A/ (u) = 0 (see |29, Theorem 2.2]), Theorem (with T = w) concludes the result. O

Now, we present a variant of Theorem 3.1} Here no asymptotic condition on the nonlinear term GG
is requested; on the other hand, the functions F' and G are supposed to be nonnegative. Fix 61,6, > 0
and nonzero vector zo € RY such that
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3 lwol2 (N llagllee) fy €@0dt 1 6 03
5 T < g min T 3 T ’
/ eQ(t)F(t,xo)dt / e?® sup E(t,z)dt 2/ e sup F(t,z)dt
0 0 |z|<61 0 |x|<02

and picking

T
NeN ] 3ol (N lallee) Jy €@t 1

4 T " 2¢2
/ QO E(t, xo)dt
0

62 62
min{ 7 ! , T = } ,
/ e?W sup F(t,z)dt 2/ e?W sup F(t,z)dt
0

0 || <61 || <02
put

T T
6? — 2)\02/ et sup F(t,z)dt 63— 4)\02/ e?t) sup F(t,z)dt
0 0

|z <61 |z <02

202G ’ 4c2Go2

(3.6)

* . :
0} ¢ = min

Theorem 3.2. Suppose that the assumptions (A1) and (A2) hold. Let F : [0,T] x RY — R be
a nonnegative function satisfies the assumption (1.2). Assume that there exist a non-zero vector
zo € RN and two positive constants 0, and 0y with

0 1.0
2y 5’
c 2 2 ¢
5 T o00g [2ol” < =7 T @)t
et (Xijer Nlaislleo) fy €9t
such that
T T
/ oQ(0) Sup F(t,w)dt / eQ(t)F(t,xO)dt
() 0 || <61 <2 1 0 ;
| 02 AT, =) Jg @ o2 ’
T T
/ " sup F(t,x)dt / ¢QOF(t, o) dt
(C) =k <1 ! :
> 03 3 (TN llawll) J7 <0t [zol?

Then, for every A\ € A and for every nonnegative function G : [0,T] x RN — R satisfying the
assumption (1.2)), there exists 6 o > 0 given by (3.6) such that for each p € [0,63 5), the problem
(1.1)) has at least three weak solutions v/; j = 1,2,3 such that ||v7]|e < 02, ¥Vt € [0,T], j = 1,2,3.

Proof. Fix A and p as in the conclusion and let ® and W be as given in the proof of Theorem [3.1

1,6 1
Put r; = 5(—1)2, ry = 5(@)2 and w(t) := xo for all ¢ € [0, T]. The condition
c c
‘91 1 02
2(2Ly2 L P2y
& L)

— <
T N T ;
0 Jo eQWdt g llaijllee) Jy e9Wat
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in conjunction with (3.2)) yields

2r < O(w) < %

Since p < 43 ,, one has

sup W) sup / COIF(L, u(t)) + LG, ult))]dt
DJo

u€P~1(]—o00,r1]) . ue®—1(]—oo,r1 A

1 1

! Q(t) F 0,
e sup F(t,z)dt + ~G
0 |z<01 A
1.6,
2%
g u
/ QO E(t, zo)dt + XGxO
0

022 Naisllse) Jy €@t

IN

and

2 sup U(u) 2 sup ; /T COIF(t,u(t)) + HG(t, u(t))]dt

ued—1(]—o0,r2]) _ u€d~1(]—o0,rs Y
T2 T
' M
2/ €Q(t) sup F(t,[[‘)dt—l— _G92
< 0 || <62 )\
= Lo,
2 ¢
! u
eQ(t)F(t, xo)dt + =Gy,
1 2 0 \
< X < g 1 > -
(S lag o) S et
2V (w)
<Y
~ 3®(w)

Therefore, (b;) and (b2) of Theorem [2.2 are verified. Finally, we show that ® — AU satisfies the
assumption 2. of Theorem . For this purpose let ' and u? be two local minima for ® — AW. Thus
u' and u? are critical point for ® — A\W. Since the functions F' and G are nonnegative, we have

(AF 4+ pG)(t, suy + (1 — s)uy) > 0,

and hence, VU(su; + (1 — s)ug) > 0, for all s € [0,1]. Then, since the weak solutions of the problem
(1.1) are exactly the solutions of the equation ®'(u) —A¥'(u) = 0 (see [29, Theorem 2.2]), by Theorem
the problem (1.1]) possesses at least three periodic solutions v7; j = 1,2, 3 such that ||v7||s < 62,
j=1,2,3. O

A special case of Theorem [3.1]is the following theorem.
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Theorem 3.3. Let F' : RN — R be a nonnegative continuously differentiable function such that
F(0,---,0) =0. Assume that

maxj|<¢ F'(z)

F
lim inf > = lim sup (:2) = 0.
£—0 5 |z| =400 |l‘|

Then, there is A\* > 0 such that for each A\ > X\* and for every continuously differentiable function
G RN — R such that G(0,--- ,0) = 0, satisfying the asymptotical condition

lim sup Glx)

|z|—o0 |ZL’|2

< 400,

there exists 63 , > 0 such that, for each p € (0,03 [, the problem

{ —ii(t) — q(B)a(t) + A()u(t) = A\WF(u(t) + uVG(u(t))  ae. te0,T),
w(0) — u(T) = a(0) — 4(T) = 0,

admits at least three classical solutions.

o2, Hlaijlleo) fo eQ@at

Proof. Fix A > \* := for some non zero vector x, € RY. Since

T
2F(zo)/ QW gt
0
zl<e F
lim jnf 22Xz £
£—0 §2

there is a sequence {6,,} C]0,+oo[ such that lim 6, =0 and

n—oo

. maX|m|S9n F(w) .
STe

Hence, there exists § > 0 such that

max F'(z)
4] <8

— < min 5 N T 5 5 (T )
0 (i llaijllee) fy e@®dt 1ol 2e2 [ e@at

and 0 < |zo|c(0 fOT QM dt)z. Theorem [3.1| concludes the result. O
Moreover, the following result is a consequence of Theorem [3.2]

Theorem 3.4. Let F' : R3 — R be a nonnegative continuously differentiable function such that
F(0,0,0) =0,

MAX|(z1,0,03)|<E F(Il, T2, 133)

li =0
ggcr)l+ & ’
and A
max  F(zq,29,73) < -——=F(1,1,1).
[(z1,22,23)|<6 ( b2 3) 302(63 — 1) ( )

27 9
4F(1,1,1)7 (€3 — 1) max|(z, z9.05)<6 F (€
tinuously differentiable function G : R* — R such that G(0,0,0) = 0, there exists 03 ¢ > 0 such that,

Then, for every A\ € < > and for every nonnegative con-
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for each p € 10,63 5[, the problem

{ —i(t) —u(t) + A(t)u(t) = A\VF (u(t)) + puVG(u(t)) a.e. t€[0,3],
u(0) —u(3) = a(0) — u(3) =0,

where A(t) is a third-order identity matriz, admits at least three classical solutions.

Proof. Choose N =3, T'=3, q(t) =1 for all t € [0,3], f, = 6 and z¢ = (1, 1,1). Therefore,

3202 (S0 llayll) fif @Odt o7

2 T 2F(1,1,1)’
/ QO R (t, zo)dt ( )
0
and
1 03 1 18
ez (T 2 (e3 -1 max  F(xq,29,23)
2/ eQ(t) sup F(tv é)dt ( )‘(11’22’13)|S6 ( ! ? 3)
0 |€]<62
Moreover, since
hm ma’X‘($1,$2,$3)|S§ F(x17'r27x3> _ O
z—0+t 62 ’
there exists a positive constant 6; < ¢ @ such that
max  F(x1, 29, 23)
[(z1,22,23)[<61 2
< F(1,1,1
z gt (b1
and
6? S 18
max  F(x1, 20,7 max  F(xqy, 29, 73)
[(z1,72,23)|<601 ( b2 3) [(z1,22,73)|<6 ( b2 3)

Hence, since the assumptions of Theorem are fulfilled, we have the conclusion from Theorem
0.2l ]
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