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Abstract

Existence and uniqueness of fixed points are established for a mapping satisfying a new type
of contractive condition involving a rational expression on a generalized metric space. Some main
results by Ahmad et al. [J. Ahmad, M. Arshad, C. Vetro, Int. J. Anal., 2013 (2013), 6 pages] are
extended and generalized, also several particular cases and an illustrative example are given. c©2016
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1. Introduction and preliminaries

In the mid-sixties ten, fixed points results dealing with general contractive conditions with rational
expressions were appeared. One of the well-known works in this direction were established by Khan
[4]. Fisher [3] gave a revised version of Khan as follows:
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Theorem 1.1 ([3]). Let (X, d) be a complete metric space and let T : X → X satisfies

d(Tx, Ty) ≤

{
k d(x,Tx)d(x,Ty)+d(y,Ty)d(y,Tx)

d(x,Ty)+d(Tx,y)
, if d(x, Ty) + d(Tx, y) 6= 0,

0, if d(x, Ty) + d(Tx, y) = 0,
(1.1)

where k ∈ [0, 1) and x, y ∈ X. Then T has a unique fixed point x∗ ∈ X. Moreover, for all x ∈ X,
the sequence {T nx} converges to x∗.

Ahmad et al. [1] gave a new version of Theorem 1.1 in the setting of generalized metric spaces
as follows:

Theorem 1.2. Let (X, d) be a complete generalized metric space and let T : X → X be a self-mapping
such that for all x, y ∈ X

d(Tx, Ty) ≤

{
δd(x, y) + ζ d(x,Tx)d(x,Ty)+d(y,Ty)d(y,Tx)

d(x,Ty)+d(Tx,y)
, ifd(x, Ty) + d(Tx, y) 6= 0,

0, ifd(x, Ty) + d(Tx, y) = 0,
(1.2)

for all x, y ∈ X and x 6= y, and for some δ, ζ ∈ [0, 1) with δ + ζ < 1. Then T has a unique fixed
point x∗ ∈ X. Moreover, for all x ∈ X, the sequence {T nx} converges to x∗.

The aim of this paper is to give a new version of Theorem 1.1 in the setting of generalized metric
spaces. The following definitions will be needed in the sequel.

Definition 1.3 ([2]). Let X be a nonempty set and d : X × X → R+ a mapping such that for all
x, y ∈ X and for all distinct points u, v ∈ X, which are different from x and y, one has

(GM1) d(x, y) = 0 if and only if x = y;

(GM2) d(x, y) = d(y, x);

(GM3) d(x, z) ≤ d(x, u) + d(u, v) + d(v, z)].

Then d is called generalized metric and the pair (X, d) is called generalized metric space (or shortly
GMS).

For some examples about generalized metric space, we refer readers to [1, 5, 6].

Definition 1.4 ([2]). Let (X, d) be a GMS, {xn}∞n=1 be a sequence in X and x ∈ X. Then

(i) We say that {xn}∞n=1 is GMS convergent to x if and only if d(xn, x)→ 0 as n→∞. We denote
this by xn → x.

(ii) We say that {xn}∞n=1 is a GMS Cauchy sequence if and only if, for each ε > 0 , there exists a
natural number n(ε) such that d(xn, xm) < ε for all n > m > n(ε).

(iii) (X, d) is called GMS complete if every GMS Cauchy sequence is GMS convergent in X.

2. Main results

Theorem 2.1. Let (X, d) be a complete GMS and let T : X → X be a self-mapping such that

d(Tx, Ty) ≤

{
γmax

{
d(x, y), d(x,Tx)d(x,Ty)+d(y,Ty)d(y,Tx)

max{d(x,Ty),d(Tx,y)}

}
, if max{d(x, Ty), d(Tx, y)} 6= 0,

0, if max{d(x, Ty), d(Tx, y)} = 0,
(2.1)
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for all x, y ∈ X and x 6= y, and for some γ ∈ [0, 1). Then T has a unique fixed point x∗ ∈ X.
Moreover, for all x ∈ X, the sequence {T nx} converges to x∗.

Proof. Let x0 = x ∈ X. Put xn+1 = Txn = T n+1x0 for all n ∈ N0 = N ∪ {0}. If, there exists
n ∈ N such that xn = xn−1, then xn−1 is a fixed point of T. This completes the proof. Therefore, we
suppose xn 6= xn−1 for all n ∈ N. We shall divide the proof into two cases.

Cases 1. Assume that
max{d(xm, Txn), d(Txm, xn)} 6= 0

for all m ∈ N and n ∈ N0. Then from (2.1), we have

d(xn, xn+1) = d(Txn−1, Txn)

≤ γmax

{
d(xn−1, xn),

d(xn−1, Txn−1)d(xn−1, Txn) + d(xn, Txn)d(xn, Txn−1)

max{d(xn−1, Txn), d(Txn−1, xn)}

}
= γmax

{
d(xn−1, xn),

d(xn−1, xn)d(xn−1, xn+1) + d(xn, xn+1)d(xn, xn)

max{d(xn−1, xn+1), d(xn, xn)}

}
= γd(xn−1, xn).

(2.2)

Hence the sequence {d(xn, xn+1)} is monotonic nonincreasing and bounded below. So, there exists
ζ ≥ 0 such that

lim
n→∞

d(xn, xn+1) = ζ = lim
n→∞

d(xn−1, xn). (2.3)

We claim that ζ = 0. Suppose by the contrary that ζ > 0. Taking limits as n → ∞ to each side of
the (2.2), we get ζ ≤ γζ < ζ. It is a contradiction. Therefore, we have

lim
n→∞

d(xn, Txn) = lim
n→∞

d(xn, xn+1) = 0. (2.4)

A gain using inequality (2.1), we have

d(xn, xn+2)

= d(Txn−1, Txn+1)

≤ γmax

{
d(xn−1, xn+1),

d(xn−1, Txn−1)d(xn−1, Txn+1) + d(xn+1, Txn+1)d(xn+1, Txn−1)

max{d(xn−1, Txn+1), d(Txn−1, xn+1)}

}
= γmax

{
d(xn−1, xn+1),

d(xn−1, xn)d(xn−1, xn+2) + d(xn+1, xn+2)d(xn+1, xn)

max{d(xn−1, xn+2), d(xn, xn+1)}

}
≤ γmax

{
d(xn−1, xn+1),

d(xn−1, xn)d(xn−1, xn+2)

d(xn−1, xn+2)
+
d(xn+1, xn+2)d(xn+1, xn)

d(xn, xn+1)

}
= γmax {d(xn−1, xn+1), d(xn−1, xn) + d(xn+1, xn+2)}
≤ γmax {d(xn−1, xn) + d(xn, xn+2) + d(xn+2, xn+1), d(xn−1, xn) + d(xn+1, xn+2)}
= γ [d(xn−1, xn) + d(xn, xn+2) + d(xn+2, xn+1))] .

It follows that

d(xn, xn+2) ≤
1

1− γ
[d(xn−1, xn) + d(xn+2, xn+1)] .
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So from (2.4), we get

lim
n→∞

d(xn, xn+2) = 0. (2.5)

Now, we claim that, {xn}∞n=1 is a Cauchy sequence. Arguing by contradiction, we assume that
there exist ε > 0, the sequences {p(n)}∞n=1 and {q(n)}∞n=1 of natural numbers such that

p(n) > q(n) > n, d(xp(n), xq(n)) ≥ ε, d(xp(n)−1, xq(n)) < ε, ∀n ∈ N. (2.6)

Observe that

ε ≤ d(xp(n), xq(n)) ≤ d(xp(n), xp(n)−2) + d(xp(n)−2, xp(n)−1) + d(xp(n)−1, xq(n))

= d(xp(n), xp(n)−2) + d(xp(n)−2, xp(n)−1) + ε.

It follows from (2.4) and (2.5) that

lim
n→∞

d(xp(n), xq(n)) = ε. (2.7)

From (2.1), we have

ε ≤ d(xp(n)+1, xq(n)+1)

= d(Txp(n), Txq(n)))

≤ γmax

{
d(xp(n), xq(n)),

d(xp(n), Txp(n))d(xp(n), Txq(n)) + d(xq(n), Txq(n))d(xq(n), Txp(n))

max{d(xp(n), Txq(n)), d(Txp(n), xq(n))}

}
= γmax

{
d(xp(n), xq(n)),

d(xp(n), xp(n)+1)d(xp(n), xq(n)+1) + d(xq(n), xq(n)+1)d(xq(n), xp(n)+1)

max{d(xp(n), xq(n)+1), d(xp(n)+1, xq(n))}

}
≤ γmax

{
d(xp(n), xq(n)),

d(xp(n), xp(n)+1)d(xp(n), xq(n)+1)

d(xp(n), xq(n)+1)
+
d(xq(n), xq(n)+1)d(xq(n), xp(n)+1)

d(xp(n)+1, xq(n))

}
= γmax

{
d(xp(n), xq(n)), d(xp(n), xp(n)+1) + d(xq(n), xq(n)+1)

}
.

It follows from (2.4) and (2.7) that ε ≤ γε < ε. This contradiction shows that {xn} is a cauchy
sequence. By Completeness of (X, d), {xn} converges to some point x∗ in X. Therefore

lim
n→∞

d(xn, x
∗) = 0. (2.8)

Observe that

d(x∗, Tx∗) ≤ d(x∗, xn+1) + d(xn+1, xn) + d(xn, Tx
∗)

≤ d(x∗, xn+1) + d(xn+1, xn) + d(xn, xn+1) + d(xn+1, x
∗) + d(x∗, Tx∗)

≤ 2d(x∗, xn+1) + 2d(xn+1, xn) + d(x∗, Tx∗).

It follows from (2.4) and (2.8)that

lim
n→∞

d(xn, Tx
∗) = d(x∗, Tx∗). (2.9)

On the other hand, from (2.1), we get

d(xn+1, Tx
∗) = d(Txn, Tx

∗)

≤ γmax

{
d(xn, x

∗),
d(xn, Txn)d(xn, Tx

∗) + d(x∗, Tx∗)d(x∗, Txn)

max{d(xn, Tx∗), d(Txn, x∗)}

}
≤ γmax

{
d(xn, x

∗),
d(xn, xn+1)d(xn, Tx

∗) + d(x∗, Tx∗)d(x∗, xn+1)

max{d(xn, Tx∗), d(xn+1, x∗)}

}
.

(2.10)
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So from (2.4), (2.8), (2.9) and taking limits as n→∞ to each side of (2.10), we have d(x∗, Tx∗) = 0.
Now, we show that T has a unique fixed point. For this, we assume that y∗ is another fixed point of
T in X such that d(x∗, y∗) > 0. Therefore

max{d(x∗, T y∗), d(Tx∗, y∗)} = d(x∗, y∗) > 0.

So from (2.1), we get

d(x∗, y∗) = d(Tx∗, T y∗)

≤ γmax

{
d(x∗, y∗),

d(x∗, Tx∗)d(x∗, T y∗) + d(y∗, T y∗)d(y∗, Tx∗)

max{d(x∗, T y∗), d(Tx∗, y∗)}

}
≤ γmax

{
d(x∗, y∗),

d(x∗, x∗)d(x∗, y∗) + d(y∗, y∗)d(y∗, x∗)

max{d(x∗, y∗), d(x∗, y∗)}

}
= γd(x∗, y∗).

Since γ ∈ [0, 1). This leads to a contradiction and hence x∗ = y∗. This complete the proof.

Cases 2. Assume that there exists m ∈ N and n ∈ N0 such that

max{d(xm, Txn), d(Txm, xn)} = 0.

By condition (2.1), it follows that d(Txm, Txn) = 0 and hence xn = Txm = Txn = xm . This
completes the proof of the existence of a fixed point of T . The uniqueness follows as in Case 1.

Theorem 2.2. Let (X, d) be a complete GMS and let T : X → X be a self-mapping such that for
all x, y ∈ X

d(Tx, Ty) ≤

{
δd(x, y) + ζ d(x,Tx)d(x,Ty)+d(y,Ty)d(y,Tx)

max{d(x,Ty),d(Tx,y)} , if max{d(x, Ty), d(Tx, y)} 6= 0,

0, if max{d(x, Ty), d(Tx, y)} = 0,

for all x, y ∈ X and x 6= y, and for some δ, ζ ∈ [0, 1) such that δ+ ζ < 1. Then T has a unique fixed
point x∗ ∈ X. Moreover, for all x ∈ X, the sequence {T nx} converges to x∗.

Proof. Since

δd(x, y) + ζ
d(x, Tx)d(x, Ty) + d(y, Ty)d(y, Tx)

max{d(x, Ty), d(Tx, y)}

≤ (δ + ζ) max

{
d(x, y),

d(x, Tx)d(x, Ty) + d(y, Ty)d(y, Tx)

max{d(x, Ty), d(Tx, y)}

}
.

So by taking γ = δ + ζ in Theorem 2.1, the proof is complete.

Theorem 2.3 ([1]). Let (X, d) be a complete generalized metric space and let T : X → X be a
self-mapping such that for all x, y ∈ X

d(Tx, Ty) ≤

{
δd(x, y) + ζ d(x,Tx)d(x,Ty)+d(y,Ty)d(y,Tx)

d(x,Ty)+d(Tx,y)
, ifd(x, Ty) + d(Tx, y) 6= 0,

0, ifd(x, Ty) + d(Tx, y) = 0,
(2.11)

for all x, y ∈ X and x 6= y, and for some δ, ζ ∈ [0, 1) with δ + ζ < 1. Then T has a unique fixed
point x∗ ∈ X. Moreover, for all x ∈ X, the sequence {T nx} converges to x∗.
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Proof. Since

d(x, Tx)d(x, Ty) + d(y, Ty)d(y, Tx)

d(x, Ty) + d(Tx, y)
≤ d(x, Tx)d(x, Ty) + d(y, Ty)d(y, Tx)

max{d(x, Ty), d(Tx, y)}
.

So from Theorem 2.2, the proof is complete.

Example 2.4. Let X = {0, 1, 2, 3} and define d : X ×X → R as follows:

d(0, 0) = d(1, 1) = d(2, 2) = d(3, 3) = 0,

d(0, 3) = d(3, 0) = d(2, 3) = d(3, 2) = d(1, 2) = d(2, 1) = 1,

d(0, 2) = d(2, 0) = d(1, 3) = d(3, 1) = 2.1,

d(0, 1) = d(1, 0) = 1.1.

Then, (X, d) is a complete GMS. Let T : X → X be defined by

Tx =

{
0, if x 6= 3,
1, if x = 3.

(2.12)

Now we consider the following cases:
Case1. Let (x, y) ∈ {(0, 1), (1, 0)}, then

d(T0, T1) = 0, d(0, 1) = 1.1, d(0, T1) + d(T0, 1) = 1.1,

d(0, T0)d(0, T1) + d(1, T1)d(1, T0) = 1.21,max{d(0, T1), d(T0, 1)} = 1.1.

Case2. Let (x, y) ∈ {(0, 2), (2, 0)}, then

d(T0, T2) = 0, d(0, 2) = 2.1, d(0, T2) + d(T0, 2) = 2.1,

d(0, T0)d(0, T2) + d(2, T2)d(2, T0) = 4.4,max{d(0, T2), d(T0, 2)} = 2.1.

Case3. Let (x, y) ∈ {(0, 3), (3, 0)}, then

d(T0, T3) = 1.1, d(0, 3) = 1, d(0, T3) + d(T0, 3) = 2.1,

d(0, T0)d(0, T3) + d(3, T3)d(3, T0) = 2.1,max{d(0, T3), d(T0, 3)} = 1.1.

Case4. Let (x, y) ∈ {(1, 2), (2, 1)}, then

d(T1, T2) = 0, d(1, 2) = 1, d(1, T2) + d(T1, 2) = 3.1,

d(1, T1)d(1, T2) + d(2, T2)d(2, T1) = 5.62,max{d(1, T2), d(T1, 2)} = 2.1.

Case5. Let (x, y) ∈ {(1, 3), (3, 1)}, then

d(T1, T3) = 1.1, d(1, 3) = 2.1, d(1, T3) + d(T1, 3) = 1,

d(1, T1)d(1, T3) + d(3, T3)d(3, T1) = 2.1,max{d(1, T3), d(T1, 3)} = 1.

Case6. Let (x, y) ∈ {(2, 3), (3, 2)}, then

d(T2, T3) = 1.1, d(2, 3) = 1, d(2, T3) + d(T2, 3) = 2,

d(2, T2)d(2, T3) + d(3, T3)d(3, T2) = 3.1,max{d(2, T3), d(T2, 3)} = 1.
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In Case3, for all δ, ζ ∈ [0, 1) such that δ + ζ < 1, we have

δd(0, 3) + ζ
d(0, T0)d(0, T3) + d(3, T3)d(3, T0)

d(0, T3) + d(3, T0)
= δ + ζ < 1 < 1.1 = d(T0, T3).

This proves that T does not satisfy in assumption of Theorem 11 of [1]. However in all cases, for
λ = 69

80
, ζ = 1

8
and δ ∈ [0.57, 1), we have

d(Tx, Ty) ≤ λd(x, y) + ζ
d(x, Tx)d(x, Ty) + d(y, Ty)d(y, Tx)

max{d(x, Ty), d(y, Tx)}
,

and

d(Tx, Ty) ≤ δmax{d(x, y),
d(x, Tx)d(x, Ty) + d(y, Ty)d(y, Tx)

max{d(x, Ty), d(y, Tx)}
}.

So by Theorem 2.1 or Theorem 2.2, 0 is the unique fixed point of T .
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