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Abstract

Existence and uniqueness of fixed points are established for a mapping satisfying a new type
of contractive condition involving a rational expression on a generalized metric space. Some main
results by Ahmad et al. [J. Ahmad, M. Arshad, C. Vetro, Int. J. Anal., 2013 (2013), 6 pages| are
extended and generalized, also several particular cases and an illustrative example are given. (©)2016
All rights reserved.
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1. Introduction and preliminaries

In the mid-sixties ten, fixed points results dealing with general contractive conditions with rational
expressions were appeared. One of the well-known works in this direction were established by Khan
[4]. Fisher [3] gave a revised version of Khan as follows:
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Theorem 1.1 ([3]). Let (X,d) be a complete metric space and let T : X — X salisfies

kd(m,Tm)d(w,Ty)+d(y,Ty)d(y,Ta:)’ Zf d([L‘,Ty) + d(TZE,y) 7& O,

d(Tx,Ty) < { d(z,Ty)+d(Tz,y) (1.1)

0, if d(x,Ty) +d(Tz,y) =0,

where k € [0,1) and x,y € X. Then T has a unique fized point x* € X. Moreover, for all x € X,
the sequence {T"x} converges to x*.

Ahmad et al. [I] gave a new version of Theorem in the setting of generalized metric spaces
as follows:

Theorem 1.2. Let (X, d) be a complete generalized metric space and let T : X — X be a self-mapping
such that for all x,y € X

5d(, y) + (AT LI TINGTE) £ Ty) + d(Ta, y) # 0,

0, ifd(z, Ty)+d(Tz,y) =0, (1.2)

d(Tz,Ty) < {

for all x,y € X and x # y, and for some 6, € [0,1) with § + ( < 1. Then T has a unique fized
point z* € X. Moreover, for all x € X, the sequence {T"x} converges to x*.

The aim of this paper is to give a new version of Theorem in the setting of generalized metric
spaces. The following definitions will be needed in the sequel.

Definition 1.3 ([2]). Let X be a nonempty set and d: X x X — R* a mapping such that for all
x,y € X and for all distinct points u,v € X, which are different from x and y, one has

(GM1) d(x,y) =0 if and only if z = y;
(GM2) d(x,y) = d(y, x);
(GM3) d(x,z) < d(z,u) + d(u,v) + d(v, 2)].

Then d is called generalized metric and the pair (X, d) is called generalized metric space (or shortly

GMS).
For some examples about generalized metric space, we refer readers to [1I, [5, [6].
Definition 1.4 ([2]). Let (X, d) be a GMS, {x,}22, be a sequence in X and z € X. Then

(1) We say that {z,}°°, is GMS convergent to x if and only if d(z,,z) — 0 as n — oco. We denote
this by x,, — x.

(1) We say that {z,}°°, is a GMS Cauchy sequence if and only if, for each € > 0 , there exists a
natural number n(e) such that d(z,,z,,) < € for all n. > m > n(e).

(173) (X,d) is called GMS complete if every GMS Cauchy sequence is GMS convergent in X.

2. Main results

Theorem 2.1. Let (X, d) be a complete GMS and let T : X — X be a self-mapping such that

max{d(z,Ty),d(Tz,y)}

¥ max {d(ﬂs, Y), d(“’T””)d(m’Ty)+d(y’Ty)d(y’Tx)} ,if max{d(z,Ty),d(Tz,y)} # 0, (2.1)
0, if max{d(z,Ty),d(Tz,y)} =0, '

d(Tz,Ty) < {
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for all z,y € X and x # y, and for some v € [0,1). Then T has a unique fized point z* € X.
Moreover, for all x € X, the sequence {T"x} converges to x*.

Proof. Let vp = x € X. Put 41 = Tx, = T"ay for all n € Ny = NU {0}. If, there exists
n € N such that z,, = x,_1, then z,_; is a fixed point of T. This completes the proof. Therefore, we
suppose x,, # r,_1 for all n € N. We shall divide the proof into two cases.

Cases 1. Assume that
max{d(zy,, T'z,), d(T Ty, x,)} # 0

for all m € N and n € Ny. Then from ([2.1), we have

d(xp, Tpi1) = d(Txp_q1, Txy,)

d(xp_1, Txp1)d(xpn_1,T2y) + d(xn, Txy)d(zn, Ta,—1)
max{d(x,_1,Txy,),d(Txy_1,2,)}
d<xn717 xn)d(xnfla xn+1) + d(xn7 xn+1>d<xn7 xn)
max{d(l‘n*b anrl)a d(mm $n)}

< ymax {d(xn_l, Tp),
(2.2)

= v max {d(xn_l, Tn),
= yd(Tp_1, Tp).

Hence the sequence {d(z,, z,+1)} is monotonic nonincreasing and bounded below. So, there exists
¢ > 0 such that

lim d(z,, Tpy1) = ¢ = lim d(zp-1,25). (2.3)

n—oo n—o0

We claim that ¢ = 0. Suppose by the contrary that ( > 0. Taking limits as n — oo to each side of
the (2.2), we get ¢ < y( < (. It is a contradiction. Therefore, we have

lim d(z,, Tx,) = lim d(z,,z,41) = 0. (2.4)

n—0o0 n—oo

A gain using inequality ([2.1]), we have

d(xna zn+2>
= d(Txn—la T"L‘n—‘rl)

d(zp_1, Txy 1)d(@n_1, Trpi1) + d(@pi1, Tops1)d(Xpi1, TTy 1) }
max{d(x,_1,Ten1), d(TTp_1,2,:1)}
d(xp_1,Tn)d(p_1, Tnia) + d(@pi1, Tni2)d(Tpi1, Tn) }
max{d(,_1, Tni2), d(Tp, Tni1)}
d(wp 1, 2n)d(Tn 1, Tnya) | d(Tni1, Try2)d(Tngr, Tn) }
d(xp_1, Tpi2) d(xp, Tpyt)
= ymax {d(z,_1, Tps1), d(Tn_1,Tn) + d(Tpi1, Tni2)}
< ymax {d(zp_1,Tn) + d(XTp, Tni2) + d(Tpi2, Tnsr), d(Tp_1, Tn) + d(Tpi1, Tni2)}
=7 [d(zn-1,20) + (T, Tpy2) + d(Tps2, Tntr))] -

< ymax {d(xn_1, Tpi1),

= 7y max {d(xn—la xn—&-l)v

< ymax {d(:vn_l, Tnt1),

It follows that

1
d(l’n, xn+2> S : [d<xn717 xn) + d(anrZu xn+1)] .
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So from (2.4)), we get
lim d(x,, x,42) = 0. (2.5)

n—oo

Now, we claim that, {z,}5°, is a Cauchy sequence. Arguing by contradiction, we assume that
there exist € > 0, the sequences {p(n)}2; and {q(n)}5°, of natural numbers such that

p(n) > q(n) >n, d(@pm); Tem)) =€ A(Tpm)—1,Tqm)) <€ Vn € N. (2.6)
Observe that
€ < d(Tp(n), Tam)) < ATp(n), Tpm)—2) + ATpm) -2, Tpn)—1) + ATpn)—1, Tg(n))
= d(xp(n), xp(n)_g) + d(xp(n)_g, Ip(n)_l) + €.
It follows from ([2.4) and (| . ) that
lim d($p(n),$q( )) = €. (27)

n—oo

From ({2.1)), we have

€< d(xp(n)+1> zq(n)Jrl)
= d(TI‘p(n), qu(n)))

< ~max {d(xp<n), Zo(m)); d(p(n), TTp(n) ) A(Tpn), TZq(m)) + d(Zq(n), TZq(n))d(Lq(n), TTp(m)) }
max{d(xp (n)s Tl'q(n)), d(Txp(n), xq(n))}
d(Zp(n), Tpn)+1) A Lp(n), Ta(m)+1) + A(Zq(n); Tg(n)+1) (L), Tpm)+1) }
max{d(Lpm), Tg(n)+1); ATpm)+1, Tg(m)) }
U@y, Ty +1) U Tp(n); Tgm+1) | U Tg(n), T +1) AT, Ty +1) }
A(Tp(n); Tg(ny+1) A(Tp(n)+1, Tg(n))
= ymax {d(Tp(m), To(n))s ATpwm)s Tp(m)11) + A(Tgn), Tormy41) f -
It follows from (12.4) and (2.7)) that ¢ < ve < e. This contradiction shows that {x,} is a cauchy
sequence. By Completeness of (X, d), {x,} converges to some point x* in X. Therefore

lim d(z,,2") =0. (2.8)

n—oo

= ymax {d(l'p(n% xQ(”))’

< v max {d(xp(n), Ty(n));

Observe that
d(z*,Ta") < d(z*, xpi1) + d(Tpg1, ) + d(20, TT")

< d(x*, xps1) + d(Tpgr, Tn) + d(Tn, ngr) + d(xper, %) + d(z*, Tx™)

<2d(x*, xpi1) + 2d(xpgq, ,) + d(z*, Tz").

It follows from and that

lim d(z,, Tx*) = d(z*, Tx"). (2.9)

n—oo

On the other hand, from (2.1)), we get
d(xpi1, Tz*) = d(Tx,, Tx")

< ymax {d(mn, x¥),

d(zp, Txy)d(x,, Ta*) + d(z*, Ta*)d(z*, Tx,) }
max{d(x,, Tz*),d(Tx,,z*)}

d(zp, Tpy1)d(x,, Ta*) + d(z*, Tax*)d(z ,xnﬂ)}
max{d(x,, Tz*),d(x, 1, 2*)} '

(2.10)

< ymax {d(xn, x¥),
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So from ([2.4)), (2.8), (2.9) and taking limits as n — oo to each side of ([2.10)), we have d(z*, Tz*) = 0.
Now, we show that 7" has a unique fixed point. For this, we assume that y* is another fixed point of
T in X such that d(z*,y*) > 0. Therefore

max{d(z*,Ty"),d(Tz",y")} = d(z*,y*) > 0.
So from (2.1)), we get
d(”,y") = d(Tz*, Ty")

< ymax {d(:v*,y*),

d(x*, Ta*)d(z*, Ty*) + d(y*, Ty*)d(y*, Tx*) }
max{d(z*, Ty*),d(Tz*,y*)}
d(a*, z")d(a",y*) + d(y*, y")d(y", ") }
max{d(z*, y*), d(z*, y*) }

< ymax {d(a:*, v,
= yd(z",y").

Since y € [0,1). This leads to a contradiction and hence z* = y*. This complete the proof.

Cases 2. Assume that there exists m € N and n € Ny such that
max{d(z,, Tz,),d(Txy,x,)} = 0.

By condition ({2.1)), it follows that d(T'z,,,Tz,) = 0 and hence z, = Tz,, = Tz, = x,, . This
completes the proof of the existence of a fixed point of 7. The uniqueness follows as in Case 1. [

Theorem 2.2. Let (X,d) be a complete GMS and let T : X — X be a self-mapping such that for
all v,y € X

d(w, y) + (AT A TYIOTE) £ oo (2, Ty), d(Ta, )} # 0,

0, if max{d(z,Ty),d(Tz,y)} =0,

d(Tz,Ty) < {

for all z,y € X and x # y, and for some §,( € [0,1) such that 6 +( < 1. Then T has a unique fized
point z* € X. Moreover, for all x € X, the sequence {T"x} converges to x*.

Proof. Since
d(xz, Tz)d(x, Ty) + d(y, Ty)d(y, Tx)
max{d(z, Ty),d(Tx,y)}

d(z,Tx)d(z, Ty) + d(y, Ty)d(y, Tx)
e G e s i

od(z,y) + ¢

So by taking v = ¢ 4+ ¢ in Theorem [2.1] the proof is complete. O

Theorem 2.3 ([1]). Let (X,d) be a complete generalized metric space and let T : X — X be a
self-mapping such that for all x,y € X

5d(a, y) + (UETRMETILUTIT2) | (y Ty) 1 d(Ta,y) £ 0,

0, ifd(x,Ty)+d(Tz,y) =0,

d(Tz, Ty) < { (2.11)

for all x,y € X and © # y, and for some 6, € [0,1) with § + ¢ < 1. Then T has a unique fized
point z* € X. Moreover, for all x € X, the sequence {T"x} converges to x*.
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Proof. Since

d(xz,Tz)d(z, Ty) + d(y, Ty)d(y, Tx)
d(x,Ty) + d(Tz,y)

So from Theorem [2.2] the proof is complete. ]

d(z, Tz)d(x, Ty) + d(y, Ty)d(y, T:z:)‘

< max{d(z,Ty),d(Tz,y)}

Example 2.4. Let X = {0, 1,2,3} and define d : X x X — R as follows:

d(0,0) = d(1,1) = d(2,2) = d(3,3) = 0,

d(0,3) = d(3,0) = d(2,3) = d(3,2) = d(1,2) = d(2,1) = 1,
d(0,2) = d(2,0) = d(1,3) = d(3,1) = 2.1,

d(0,1) = d(1,0) = 1.1.

Then, (X, d) is a complete GMS. Let T: X — X be defined by

LR s 212)

Now we consider the following cases:
Casel. Let (z,y) € {(0,1),(1,0)}, then

d(T0,T1) = 0,d(0,1) = 1.1,d(0,T1) + d(T0,1) = 1.1,
d(0,T0)d(0,T1) + d(1,T1)d(1,T0) = 1.21, max{d(0,T1),d(T0,1)} = 1.1.

Case2. Let (z,y) € {(0,2),(2,0)}, then

d(T0,T2) = 0,d(0,2) = 2.1,d(0,T2) + d(T0,2) = 2.1,
d(0,T0)d(0,T2) + d(2, T2)d(2,T0) = 4.4, max{d(0, T2),d(T0,2)} = 2.1.

Case3. Let (z,y) € {(0,3),(3,0)}, then

d(T0,T3) = 1.1,d(0,3) = 1,d(0, T3) + d(T0,3) = 2.1,
d(0,70)d(0,T3) + d(3,T3)d(3,T0) = 2.1, max{d(0, T'3),d(T0,3)} = 1.1.

Cased. Let (z,y) € {(1,2),(2,1)}, then

d(T1,T2) = 0,d(1,2) = 1,d(1,T2) + d(T1,2) = 3.1,
d(1,T1)d(1,T2) + d(2,T2)d(2,T1) = 5.62, max{d(1,T2),d(T1,2)} = 2.1.

Case5. Let (z,y) € {(1,3),(3,1)}, then

d(T1,T3) = 1.1,d(1,3) = 2.1,d(1,T3) + d(T1,3) = 1,
d(1,T1)d(1,T3) + d(3,T3)d(3, T1) = 2.1, max{d(1,T3),d(T1,3)} = 1.

Case6. Let (z,y) € {(2,3),(3,2)}, then

d(T2,T3) =1.1,d(2,3) = 1,d(2,T3) + d(T2,3) = 2,
d(2,T2)d(2,T3) + d(3,T3)d(3,T2) = 3.1, max{d(2,T3),d(T2,3)} = 1.
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In Case3, for all §,¢ € [0,1) such that 6 + { < 1, we have

d(0,70)d(0, T3) + d(3,T3)d(3,T0)
d(0, T3) + d(3,70)

5d(0,3) + ¢ — 5+ ¢<1<11=d(T0,T3).

This proves that T does not satisfy in assumption of Theorem 11 of [I]. However in all cases, for

A= %, = % and ¢ € [0.57,1), we have

d(z, Tx)d(x, Ty) + d(y, Ty)d(y, Tx)

AT, Ty) < Ad(e,y) + = eI Ty d(y. To)}

and

d(z, Tz)d(z, Ty) + d(y, Ty)d(y, Tx)}
max{d(z, Ty),d(y, Tx)} '

d(Tz,Ty) < d max{d(z,y),
So by Theorem [2.1] or Theorem 0 is the unique fixed point of 7.
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