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Abstract

In this work, we study the bifurcation problems of double homoclinic loops with resonant condition
for higher dimensional systems. The Poincaré maps are constructed by using the foundational solutions
of the linear variational systems as the local coordinate systems in the small tubular neighborhoods of the
homoclinic orbits. We obtain the existence, number and existence regions of the small homoclinic loops,
small periodic orbits, and the large homoclinic loops, large periodic orbits, respectively. Moreover, the
complete bifurcation diagrams are given. c©2016 All rights reserved.
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1. Introduction and Hypotheses

In the study of the complex dynamic behaviors of high-dimensional nonlinear dynamical systems, the
bifurcation problems of homoclinic orbits and heteroclinic loops have been becoming an important research
field. By using the traditional Poincaré map construction method, [1, 8, 11] discussed the bifurcations
of non-degenerated homoclinic loops. In [13], Zhu discussed the bifurcation problems of non-degenerated
homoclinic loop by using the generalized Floquet theory. In [3, 4, 5, 6], by using the foundational solutions of
the linear variational systems of the unperturbed systems along the homoclinic orbits as the local coordinate
systems to construct the Poincaré maps, the authors studied the bifurcations and stability of homoclinic
loops for higher dimensional systems. In [2, 10], the stability of double homoclinic loops was studied. In
[7, 12], Lu and Zhang studied the double homoclinic loops bifurcations under the non-resonant condition.
In this paper, we study the bifurcations of double homoclinic loops under the resonant condition for higher
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dimensional systems. In this case, we get the complete bifurcation diagrams. Specially, we obtain the more
complex bifurcation phenomena than that of [12].

Suppose the following Cr system
ż = f(z) , (1.1)

where r ≥ 5, z ∈ Rm+n, satisfies the following hypotheses.

(H1) (Hyperbolicity) z = 0 is the hyperbolic equilibrium of system (1.1), the stable manifold W s
0 and

the unstable manifold W u
0 of z = 0 are m-dimensional and n-dimensional respectively. λ1 and −ρ1 are

simple eigenvalues of Df(0), such that any other eigenvalue σ of Df(0) satisfies either Reσ < −ρ0 <
−ρ1 < 0 or Reσ > λ0 > λ1 > 0, where λ0 and ρ0 are some positive numbers.

(H2) (Non-degeneration) System (1.1) has a double homoclinic loops Γ = Γ1 ∪ Γ2, Γi = {z = ri(t) :
t ∈ R, ri(±∞) = 0}, i = 1, 2. For any P ∈ Γ, codim(TPW

u
0 + TPW

s
0 ) = 1, where, TPW

s
0 and TPW

u
0

are the tangent spaces of W s
0 and W u

0 at P respectively.

(H3) (Strong inclination) lim
t→+∞

(Tri(t)W
s
0 +Tri(t)W

u
0 ) = T0W

s
0 ⊕T0W

uu
0 , lim

t→−∞
(Tri(t)W

s
0 +Tri(t)W

u
0 ) =

T0W
ss
0 ⊕ T0W

u
0 , where i = 1, 2, W ss

0 and W uu
0 are the strong stable manifold and the strong unstable

manifold of z = 0 respectively, T0W
ss
0 is the generalized eigenspace corresponding to those eigenvalues

with smaller real part than−ρ0, T0W
uu
0 is the generalized eigenspace corresponding to those eigenvalues

with larger real part than λ0. Let e±i = lim
t→∓∞

ṙi(t)/|ṙi(t)|, e+
i ∈ T0W

u
0 and e−i ∈ T0W

s
0 are the

unit eigenvectors corresponding to λ1 and −ρ1 respectively. e+
1 = −e+

2 , e−1 = −e−2 . span (T0W
uu
0 ,

e+
i ) = T0W

u
0 , span (T0W

ss
0 , e−i ) = T0W

s
0 .

(H4) (Resonance condition) ρ1 = λ1.

Now, we consider the bifurcation problems of the following Cr system

ż = f(z) + g(z, µ), (1.2)

where µ ∈ Rl, l ≥ 3, 0 ≤ |µ| � 1, g(0, µ) = g(z, 0) = 0.

2. Local coordinate systems

Suppose that (H1)–(H3) are established. Then, for |µ| � 1, in the small enough neighborhood U of
z = 0, we introduce a Cr transformation such that system (1.2) has the following form

ẋ = [λ1(µ) + · · · · · · ]x+ u[O(y) +O(v)],
ẏ = [−ρ1(µ) + · · · · · · ]y + v[O(x) +O(u)],
u̇ = [B1(µ) + · · · · · · ]u+ x[O(x) +O(y) +O(v)],
v̇ = [−B2(µ) + · · · · · · ]v + y[O(x) +O(y) +O(u)],

(2.1)

where z = (x, y, u∗, v∗)∗, x ∈ R1, y ∈ R1, u ∈ Rn−1, v ∈ Rm−1, ∗ means transposition, λ1(0) = ρ1(0),
Reσ(B1(µ)) > λ0, Reσ(−B2(µ)) < −ρ0. Moreover, the unstable manifold, stable manifold, strong unstable
manifold, strong stable manifold and local homoclinic orbits have the following forms, respectively

W u
loc = {y = 0, v = 0}, W s

loc = {x = 0, u = 0, },
W uu
loc = {x = 0, y = 0, v = 0}, W ss

loc = {x = 0, u = 0, y = 0},
Γi ∩W u

loc = {y = 0, v = 0, u = ui(x)}, Γi ∩W s
loc = {x = 0, u = 0, v = vi(y)},

where i = 1, 2, ui(0) = u̇i(0) = 0, vi(0) = v̇i(0) = 0.
Denote ri(t) = (rxi (t), ryi (t), (rui (t))∗,(rvi (t))∗)∗, i = 1, 2. Suppose that r1(−T1) = (δ, 0, δ∗1,u, 0

∗)∗, r1(T1) =
(0, δ, 0∗, δ∗1,v)

∗, r2(−T2) = (−δ, 0, δ∗2,u, 0∗)∗, r2(T2) = (0,−δ, 0∗, δ∗2,v)∗, where, Ti > 0, i = 1, 2, δ is small
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enough, such that {(x, y, u, v) :|x|,|y|,|u|,|v| < 2δ}⊂ U . Obviously, we have |δi,u| = O(δω1), |δi,v| = O(δω2),

ω1 = Reσ(B1(µ))
λ1(µ) > 1, ω2 = Reσ(B2(µ))

ρ1(µ) > 1.
Consider the linear system

ż = (Df(ri(t)))z. (2.2)

Similar to [3, 5, 6, 7, 12], system (2.2) has a fundamental solution matrix Zi(t) = (z1
i (t), z2

i (t), z3
i (t), z4

i (t))
satisfying

z1
i (t) ∈ (Tri(t)W

s)c ∩ (Tri(t)W
u)c,

z2
i (t) = (−1)iṙi(t)/|ṙyi (Ti)| ∈ Tri(t)W s ∩ Tri(t)W u,

z3
i (t) = (z3,1

i (t), · · · , z3,n−1
i (t)) ∈ (Tri(t)W

s)c ∩ (Tri(t)W
u) = Tri(t)W

uu,

z4
i (t) = (z4,1

i (t), · · · , z4,m−1
i (t)) ∈ (Tri(t)W

s) ∩ (Tri(t)W
u)c = Tri(t)W

ss,

and

Zi(Ti) =


1 0 w31

i 0
0 1 w32

i 0
0 0 w33

i 0
w14
i , w24

i w34
i I

 , Zi(−Ti) =


w11
i w21

i 0 w41
i

w12
i 0 0 w42

i

w13
i w23

i I w43
i

0, 0 0 w44
i

 ,

where i = 1, 2, w21
i < 0, w12

i 6= 0, detw33
i 6= 0, detw44

i 6= 0, and |w1j
i (w12

i )−1| � 1, j 6= 2; |w2j
i (w21

i )−1| � 1,

j = 3, 4; |w3j
i (w33

i )−1| � 1, j 6= 3; |w4j
i (w44

i )−1| � 1, j 6= 4.
Denote Φi(t) = (φ1

i (t), φ
2
i (t), φ

3
i (t), φ

4
i (t)) = (Z−1

i (t))∗, i = 1, 2, so, Φi(t) is a fundamental solution
matrix of the adjoint system φ̇ = −(Df(ri(t)))

∗φ of (2.2), and φ1
i (t) ∈ (Tri(t)W

s)c ∩ (Tri(t)W
u)c is bounded

and tends to zero exponentially as t→ ±∞[4, 7, 9, 12, 13].
We select z1

i (t), z2
i (t), z3

i (t), z4
i (t) as the local coordinate systems along Γi, i = 1, 2.

Let ∆i = w12
i /|w12

i |, i = 1, 2. We say that Γi is non-twisted as ∆i = 1, and twisted as ∆i = −1. In this
paper, we consider the case ∆1 = ∆2 = 1.

3. Poincaré Maps and the bifurcation equations

Denote hi(t) = ri(t) + Zi(t)Ni(t), Ni(t) = (n1
i , 0, (n

3
i )
∗, (n4

i )
∗)∗, i = 1, 2, let S−i = {z = hi(−Ti) :

|x|, |y|, |u|, |v| < 2δ} ⊂ U , S+
i = {z = hi(Ti) : |x|, |y|, |u|, |v| < 2δ} ⊂ U be the cross sections of Γi at t = −Ti

and t = Ti, respectively.
Now, we set up Poincaré maps. (Figure 1)
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In U , denote F21 : S+
2 → S−1 , F21(q2j+1

2 ) = q2j+2
1 ; F12 : S+

1 → S−2 , F12(q2j+1
1 ) = q2j+2

2 ; F 1
1 : S+

1 → S−1 ,

F 1
1 (q̄2j+1

1 ) = q̄2j+2
1 ; F 1

2 : S+
2 → S−2 , F 1

2 (q̄2j+1
2 ) = q̄2j+2

2 ; where i = 1, 2, j = 0, 1, · · · . In the tubular

neighborhood of Γi, let F 2
i be the map from S−i to S+

i , F 2
i (q2j

i ) = q2j+1
i , F 2

i (q̄2j
i ) = q̄2j+1

i , where i = 1, 2,
j = 1, 2, · · · .

At first, we set up the relationship between the Cartesian coordinates and the normal coordinates of the
points in the neighborhood of homoclinic loop. Let

q2j+2
i (x2j+2

i , y2j+2
i , (u2j+2

i )∗, (v2j+2
i )∗)∗ = ri(−Ti) + Zi(−Ti)N2j+2

i ,

q̄2j+2
i (x̄2j+2

i , ȳ2j+2
i , (ū2j+2

i )∗, (v̄2j+2
i )∗)∗ = ri(−Ti) + Zi(−Ti)N̄2j+2

i ,

q2j+1
i (x2j+1

i , y2j+1
i , (u2j+1

i )∗, (v2j+1
i )∗)∗ = ri(Ti) + Z(Ti)N

2j+1
i ,

q̄2j+1
i (x̄2j+1

i , ȳ2j+1
i , (ū2j+1

i )∗, (v̄2j+1
i )∗)∗ = ri(Ti) + Z(Ti)N̄

2j+1
i ,

N2j+2
i = (n2j+2,1

i , 0, (n2j+2,3
i )∗, (n2j+2,4

i )∗)∗,

N2j+1
i = (n2j+1,1

i , 0, (n2j+1,3
i )∗, (n2j+1,4

i )∗)∗,

N̄2j+2
i = (n̄2j+2,1

i , 0, (n̄2j+2,3
i )∗, (n̄2j+2,4

i )∗)∗,

N̄2j+1
i = (n̄2j+1,1

i , 0, (n̄2j+1,3
i )∗, (n̄2j+1,4

i )∗)∗.

By Z−1
i (Ti), Z

−1
i (−Ti), we get

y2j+1
1 ≈ δ, x2j+2

1 ≈ δ, y2j+1
2 ≈ −δ, x2j+2

2 ≈ −δ (3.1)

and 
n2j+2,1
i = (w12

i )−1[y2j+2
i − w42

i (w44
i )−1v2j+2

i ],

n2j+2,3
i = u2j+2

i − δiu + bi(w
12
i )−1y2j+2

i + ai(w
44
i )−1v2j+2

i ,

n2j+2,4
i = (w44

i )−1v2j+2
i ,

(3.2)


n2j+1,1
i = x2j+1

i − w31
i (w33

i )−1u2j+1
i ,

n2j+1,3
i = (w33

i )−1u2j+1
i ,

n2j+1,4
i = −w14

i x
2j+1
i + ci(w

33
i )−1u2j+1

i + v2j+1
i − δiv,

(3.3)

where, bi = w11
i w

23
i (w21

i )−1 − w13
i , ai = −w43

i + w13
i (w12

i )−1w42
i − w23

i (w21
i )−1[−w41

i + w11
i (w12

i )−1w42
i ],

ci = (w14
i w

31
i + w24

i w
32
i − w34

i ).

As well, the relationship between the two kinds coordinates of q̄2j+2
i , q̄2j+1

i also satisfies (3.1), (3.2) and
(3.3).

Now, we consider the map F 2
i . Substituting transformation z = hi(t) into (1.2), and using ṙi(t) =

f(ri(t)), Żi(t) = Df(ri(t))Zi(t), we get

Zi(t)(ṅ1
i , 0,

˙(n3
i )
∗
, ˙(n4

i )
∗
)∗ = gµ(ri(t), 0)µ+ h.o.t. .

Multiplying the both sides of the above equation by Φ∗i (t) and using Φ∗i (t)Zi(t) = I, we have

(ṅ1
i , 0,

˙(n3
i )
∗
, ˙(n4

i )
∗
)∗ = Φ∗i (t)gµ(ri(t), 0)µ+ h.o.t. .

Integrating it, we have F 2
i defined by the following{

n2j+3,k
i = n2j+2,k

i +Mk
i µ+ h.o.t. ,

n̄2j+3,k
i = n̄2j+2,k

i +Mk
i µ+ h.o.t. ,

k = 1, 3, 4, (3.4)

where, Mk
i =

∫ +∞
−∞ (φki (t))

∗gµ(ri(t), 0)dt, k = 1, 3, 4, i = 1, 2.
Next, we consider the map in U . For convenience, we may assume ρ1(µ) = (1 + α(µ))λ1(µ), where,

α(µ) ∈ R1, |α(µ)| � 1, α(0) = 0.
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Assume that τ21 is the flying time from q1
2 to q2

1, τ12 is the time from q1
1 to q2

2, τ1 is the time from q̄1
1 to

q̄2
1, τ2 is the time from q̄1

2 to q̄2
2. Set sj = e−λ1(µ)τj , j = 21, 12, 1, 2, which are called the Silnikov times. By

(2.1), we have

x = eλ1(µ)(t−T−τ)x2 + h.o.t. , y = e−(1+α(µ))λ1(µ)(t−T )y1 + h.o.t. ,

u = eB1(µ)(t−T−τ)u2 + h.o.t. , v = e−B2(µ)(t−T )v1 + h.o.t. .

Neglecting the higher order terms, the above formulas defined the following maps:

F 1
1 : x̄1

1 ≈ δs1, ȳ
2
1 ≈ δs

(1+α(µ))
1 , ū1

1 ≈ s
B1(µ)/λ1(µ)
1 ū2

1, v̄
2
1 ≈ s

B2(µ)/λ1(µ)
1 v̄1

1. (3.5)

F 1
2 : x̄1

2 ≈ −δs2, ȳ
2
2 ≈ −δs

(1+α(µ))
2 , ū1

2 ≈ s
B1(µ)/λ1(µ)
2 ū2

2, v̄
2
2 ≈ s

B2(µ)/λ1(µ)
2 v̄1

2. (3.6)

F21 : x1
2 ≈ δs21, y

2
1 ≈ −δs

(1+α(µ))
21 , u1

2 ≈ s
B1(µ)/λ1(µ)
21 u2

1, v
2
1 ≈ s

B2(µ)/λ1(µ)
21 v1

2. (3.7)

F12 : x1
1 ≈ −δs12, y

2
2 ≈ δs

(1+α(µ))
12 , u1

1 ≈ s
B1(µ)/λ1(µ)
12 u2

2, v
2
2 ≈ s

B2(µ)/λ1(µ)
12 v1

1. (3.8)

At last, by (3.2)–(3.4) and (3.5)–(3.8), we can get Poincaré maps as follows:
F̄1 = F 2

1 ◦ F 1
1 is 

n̄3,1
1 = (w12

1 )−1δs
(1+α(µ))
1 +M1

1µ+ h.o.t. ,

n̄3,3
1 = ū2

1 − δ1u − b1(w12
1 )−1δs

(1+α(µ))
1 +M3

1µ+ h.o.t. ,

n̄3,4
1 = (w44

1 )−1s
B2(µ)/λ1(µ)
1 v̄1

1 +M4
1µ+ h.o.t. .

(3.9)

F̄2 = F 2
2 ◦ F 1

2 is 
n̄3,1

2 = −(w12
2 )−1δs

(1+α(µ))
2 +M1

2µ+ h.o.t. ,

n̄3,3
2 = ū2

2 − δ2u − b2(w12
2 )−1δs

(1+α(µ))
2 +M3

2µ+ h.o.t. ,

n̄3,4
2 = (w44

2 )−1s
B2(µ)/λ1(µ)
2 v̄1

2 +M4
2µ+ h.o.t. .

(3.10)

F1 = F 2
1 ◦ F21 is 

n3,1
1 = −(w12

1 )−1δs
(1+α(µ))
21 +M1

1µ+ h.o.t. ,

n3,3
1 = u2

1 − δ1u − b1(w12
1 )−1δs

(1+α(µ))
21 +M3

1µ+ h.o.t. ,

n3,4
1 = (w44

1 )−1s
B2(µ)/λ1(µ)
21 v1

2 +M4
1µ+ h.o.t. .

(3.11)

F2 = F 2
2 ◦ F12 is 

n3,1
2 = (w12

2 )−1δs
(1+α(µ))
12 +M1

2µ+ h.o.t. ,

n3,3
2 = u2

2 − δ2u + b2(w12
2 )−1δs

(1+α(µ))
12 +M3

2µ+ h.o.t. ,

n3,4
2 = (w44

2 )−1s
B2(µ)/λ1(µ)
12 v1

1 +M4
2µ+ h.o.t. .

(3.12)

Meanwhile, we get the successor functions as follows:
Ḡ1(s1, ū

2
1, v̄

1
1) = (Ḡ1

1, Ḡ
3
1, Ḡ

4
1) = (F̄1(q̄1

1)− q̄1
1) is

Ḡ1
1 = δ[(w12

1 )−1s
(1+α(µ))
1 − s1] +M1

1µ+ h.o.t. ,

Ḡ3
1 = ū2

1 − δ1u − b1(w12
1 )−1δs

(1+α(µ))
1 − (w33

1 )−1s
B1(µ)/λ1(µ)
1 ū2

1

+M3
1µ+ h.o.t. ,

Ḡ4
1 = −v̄1

1 + δ1v + w14
1 δs1 + (w44

1 )−1s
B2(µ)/λ1(µ)
1 v̄1

1 +M4
1µ+ h.o.t. .

(3.13)

Ḡ2(s2, ū
2
2, v̄

1
2) = (Ḡ1

2, Ḡ
3
2, Ḡ

4
2) = (F̄2(q̄1

2)− q̄1
2) is

Ḡ1
2 = δ[−(w12

2 )−1s
(1+α(µ))
2 + s2] +M1

2µ+ h.o.t. ,

Ḡ3
2 = ū2

2 − δ2u − b2(w12
2 )−1δs

(1+α(µ))
2 − (w33

2 )−1s
B1(µ)/λ1(µ)
2 ū2

2

+M3
2µ+ h.o.t. ,

Ḡ4
2 = −v̄1

2 + δ2v − w14
2 δs2 + (w44

2 )−1s
B2(µ)/λ1(µ)
2 v̄1

2 +M4
2µ+ h.o.t. .

(3.14)
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G(s12, s21, u
2
1, u

2
2, v

1
1, v

1
2) = (G1

1, G
3
1, G

4
1, G

1
2, G

3
2, G

4
2) = (F1(q1

2)− q1
1, F2(q1

1)− q1
2) is

G1
1 = δ[−(w12

1 )−1s
(1+α(µ))
21 + s12] +M1

1µ+ h.o.t. ,

G3
1 = u2

1 − δ1u − b1(w12
1 )−1δs

(1+α(µ))
21 − (w33

1 )−1s
B1(µ)/λ1(µ)
12 u2

2

+M3
1µ+ h.o.t. ,

G4
1 = −v1

1 + δ1v − w14
1 δs12 + (w44

1 )−1s
B2(µ)/λ1(µ)
21 v1

2 +M4
1µ+ h.o.t. ,

G1
2 = δ[(w12

2 )−1s
(1+α(µ))
12 − s21] +M1

2µ+ h.o.t. ,

G3
2 = u2

2 − δ2u + b2(w12
2 )−1δs

(1+α(µ))
12 − (w33

2 )−1s
B1(µ)/λ1(µ)
21 u2

1

+M3
2µ+ h.o.t. ,

G4
2 = −v1

2 + δ2v + w14
2 δs21 + (w44

2 )−1s
B2(µ)/λ1(µ)
12 v1

1 +M4
2µ+ h.o.t. .

(3.15)

Thus, we get the three bifurcation equations as follows:

Ḡ1(s1, ū
2
1, v̄

1
1) = (Ḡ1

1, Ḡ
3
1, Ḡ

4
1) = 0. (3.16)

Ḡ2(s2, ū
2
2, v̄

1
2) = (Ḡ1

2, Ḡ
3
2, Ḡ

4
2) = 0. (3.17)

G(s12, s21, u
2
1, u

2
2, v

1
1, v

1
2) = (G1

1, G
3
1, G

4
1, G

1
2, G

3
2, G

4
2) = 0. (3.18)

Obviously, for system (1.2), there is an one to one correspondence between the 1-homoclinic loops and 1-
periodic orbits bifurcated from Γ and the solutions of the bifurcation equations satisfy sj ≥ 0, j = 1, 2, 21, 12.

We call the 1-homoclinic loop and 1-periodic orbit bifurcated from single homoclinic loop Γi as small
homoclic loop and small period orbit, respectively; call the 1-homoclinic loop and 1-periodic orbit bifurcated
from Γ = Γ1 ∪ Γ2 as large homoclic loop and large period orbit, respectively.

4. Resonant bifurcations

At first, we consider the bifurcations of the single homoclinic loop Γi, i = 1, 2.

Theorem 4.1. Suppose (H1)–(H4) are fulfilled, |µ| � 1, α(µ)(1−w12
i ) > 0. If M1

i µ 6= 0, then, there exist
two (l − 1)-dimensional surfaces Σi ∈ {µ : α(µ)(−1)i+1M1

1µ > 0}, and Li, which have the same normal
vector M1

i , such that

(1) System (1.2) has a unique 2-multiple 1-periodic orbit near Γi if and only if µ ∈ Σi.

(2) System (1.2) has no 1-homoclinic and 1-periodic orbit near Γi if and only if

µ ∈ {α(µ) > 0, (−1)i+1M1
i µ > (−1)i+1βi(µ)} or µ ∈ {α(µ) < 0, (−1)i+1M1

i µ < (−1)i+1βi(µ)}.

(3) System (1.2) has exactly two 1-periodic orbits near Γi if and only if

µ ∈ {α(µ) > 0, (−1)i+1β0
i (µ) < (−1)i+1M1

i µ < (−1)i+1βi(µ)}
or

µ ∈ {α(µ) < 0, (−1)i+1βi(µ) < (−1)i+1M1
i µ < (−1)i+1β0

i (µ)}.

(4) System (1.2) has exactly one 1-homoclinic orbit and one 1-periodic orbit near Γi if and only if µ ∈ Li.

(5) System (1.2) has exactly one 1-periodic orbit near Γi if and only if

µ ∈ {α(µ) > 0, (−1)i+1M1
i µ < (−1)i+1β0

i (µ)} or µ ∈ {α(µ) < 0, (−1)i+1M1
i µ > (−1)i+1β0

i (µ)}.

Where, for i = 1, 2, Li := {µ : M1
i µ = β0

i (µ)} is a surface defined by

si
1+α(µ) = w12

i (si + (−1)iδ−1M1
i µ) + h.o.t. , (4.1)

with si = 0, Σi is a surface defined by

M1
i µ = βi(µ) := (−1)i+1δ(w12

i )
1

α(µ)α(µ)(1 + α(µ))
−1− 1

α(µ) + h.o.t. . (4.2)
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Proof. For Γ1, it is easy to see that, for 0 ≤ s1, |µ| � 1, equation (Ḡ3
1, Ḡ

4
1) = 0 of (3.16) always has a unique

solution ū2
1 = ū2

1(s1, µ), v̄1
1 = v̄1

1(s1, µ). Substituting it into Ḡ1
1 = 0, we get the bifurcation equation as

δ[(w12
1 )−1s

(1+α(µ))
1 − s1] +M1

1µ+ h.o.t. = 0. (4.3)

Similarly, about the bifurcation of Γ2, we have the bifurcation equation as

δ[−(w12
2 )−1s

(1+α(µ))
2 + s2] +M1

2µ+ h.o.t. = 0. (4.4)

By the analysis of the existence of solutions of the equations (4.3) and (4.4) which satisfy sj ≥ 0, we
get the results of the theorem. The method of the analysis is similar to that of [3], we don’t state in detail
here.

Σi is called 2-multiple 1-periodic orbit bifurcation surface, Li is called 1-homoclinic orbit bifurcation
surface. The bifurcations diagrams of Theorem 4.1 are the Figures 2, 3, 4 and 5.
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Σ1
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0

α(µ) > 0, 0 < w12
1 < 1

�
��

R1
1

R0
1

R2
1

R2
1

Figure 2

M1
1

Σ1

L1

0

α(µ) < 0, w12
1 > 1

�
��
R1

1

R0
1

R2
1

R2
1

Figure 3

6

0

L2

Σ2

M1
2

R1
2

R0
2

R2
2

α(µ) > 0, 0 < w12
2 < 1

R2
2

Figure 4

L2

Σ2 M1
2

R1
2

R0
2

R2
2

α(µ) < 0, w12
2 > 1

6

0

R2
2

Figure 5

Theorem 4.2. Suppose (H1)–(H4) are fulfilled, |µ| � 1, α(µ)(1− w12
i ) < 0, then, we have

(1) If (−1)i+1α(µ)(M1
i µ− β0

i (µ)) > 0, then, system (1.2) has a unique 1-periodic orbit near Γi.

(2) If (−1)i+1α(µ)(M1
i µ− β0

i (µ)) < 0, then, system (1.2) has no 1-periodic orbit near Γi.

Proof. By the definition of Li and some simple analysis for the intersection points of the curve Y = si
1+α(µ)

and the line Y = w12
i (si + (−1)iδ−1M1

i µ) + h.o.t., we get the conclusions of this theorem.

Theorem 4.3. Suppose (H1)–(H4) are fulfilled, |µ| � 1, α(µ) = 0, w12
i 6= 1. If M1

i µ 6= 0, then, we have
the following.

(1) System (1.2) has a unique 1-periodic orbit near Γi if and only if [(w12
i )−1 − 1]−1(−1)i+1M1

i µ < 0.
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(2) System (1.2) has no 1-homoclinic orbit and 1-periodic orbit near Γi if and only if

[(w12
i )−1 − 1]−1(−1)i+1M1

i µ > 0.

(3) System (1.2) has exactly a unique 1-homoclinic loop near Γi if and only if µ ∈ Li, where, Li is defined
by the following equation with si = 0.

δ[(w12
i )−1 − 1]si + (−1)i+1M1

i µ+ h.o.t. = 0. (4.5)

Proof. If α(µ) = 0, then, by (4.1), we only need to consider the solution of bifurcation equation (4.5).
So, if (w12

i )−1 6= 1, we have the unique solution si = (−1)iδ−1[(w12
i )−1 − 1]−1M1

i µ+ h.o.t..

For the bifurcations diagrams of Theorem 4.2 and Theorem 4.3, see the Figures 6, 7, 8 and 9.
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M1
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R0
2
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2

α(µ) ≥ 0, w12
2 > 1
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M1
2

0

R1
2

R0
2
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2 < 1

L2

6

Figure 9

Next we discuss the large 1-homoclinic loop and large 1-periodic orbit bifurcated by Γ = Γ1 ∪ Γ2, that
is, discuss the solutions Q(s12, s21, u

2
1, u

2
2, v

1
1, v

1
2) of the bifurcation equation (3.18) which satisfy s12 ≥ 0,

s21 ≥ 0. By (3.15), for 0 ≤ s12, s21, |µ| � 1, the equation (G3
1, G

4
1, G

3
2, G

4
2) = 0 always has unique solution

u2
1 = u2

1(s21, s12, µ), u2
2 = u2

2(s21, s12, µ), v1
1 = v1

1(s21, s12, µ), v1
2 = v1

2(s21, s12, µ). Substituting it into
(G1

1, G
1
2) = 0, we have {

δ[−(w12
1 )−1s

(1+α(µ))
21 + s12] +M1

1µ+ h.o.t. = 0,

δ[(w12
2 )−1s

(1+α(µ))
12 − s21] +M1

2µ+ h.o.t. = 0.
(4.6)

Case 1. α(µ) > 0
In this case, we have the following conclusions.

Theorem 4.4. If (H1)–(H4) are satisfied, |µ| � 1, α(µ) > 0, rank(M1
1 ,M

1
2 ) = 2, then, we have the

following (see Figure 10).

(1) In {M1
1µ < 0, M1

2µ < 0}, there exists a (l − 1)-dimensional surface L12
21 which is tangent to L2 at

µ = 0, and, in {M1
1µ > 0, M1

2µ > 0}, there exists a (l−1)-dimensional surface L21
12 which is tangent to

L1 at µ = 0, such that, the necessary and sufficient condition that system (1.2) has a large homoclinic
loop near Γ is µ ∈ L21

12 ∪ L12
21.

(2) There exists an area R1 that bounds with L21
12 and L12

21, vector M1
1 directs to the outside of R1 from L21

12,
and M1

2 directs to the inner of R1 from L12
21, such that, for µ ∈ R1, system (1.2) has a large periodic

orbit near Γ.

(3) For µ ∈ L = L1 ∩ L2, double homoclinic loops Γ is preserved.

Where, Li, i = 1, 2 are defined by M1
i µ + h.o.t. = 0 which are expressed by the two equations of (4.6)

satisfying s12 = s21 = 0. L12
21 defined by

(w12
2 )−1(−δ−1M1

1µ+ h.o.t)(1+α(µ)) + δ−1M1
2µ+ h.o.t. = 0,

and L21
12 defined by

(w12
1 )−1(δ−1M1

2µ+ h.o.t.)(1+α(µ)) − δ−1M1
1µ+ h.o.t. = 0.
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Proof. By (3.15), we have ∂(G1
1, G

1
2, G

3
1, G

3
2, G

4
1, G

4
2)/∂Q|(Q,µ)=0 = diag(δ,−δ, 1, 1,−1,−1) +(gij), where,

except g51 = w14
1 δ, g62 = −w14

2 δ, other elements of (gij) are all zero. So, ‖∂G/∂Q|(Q,µ)=0‖ 6= 0. According
to the implicit function theorem, we have, near (Q,µ) = (0, 0), the equation (3.18) has a unique solution

s21 = s21(µ), u2
1 = u2

1(µ), v1
1 = v1

1(µ), s12 = s12(µ), u2
2 = u2

2(µ), v1
2 = v1

2(µ),

satisfies s21(0) = 0, s12(0) = 0, u2
1(0) = 0, u2

2(0) = 0, v1
1(0) = 0, v1

2(0) = 0.
If (4.6) has a solution s12 = s21 = 0, then (4.6) is turned to M1

i µ + h.o.t. = 0, i = 1, 2. So, if
rank(M1

1 ,M
1
2 ) = 2, then, when µ ∈ L = L1 ∩ L2 and |µ| � 1, double homoclinic loop Γ are preserved,

where, L1, L2 are expressed by the two equations of (4.6) satisfying s12 = s21 = 0.
If (4.6) has a solution s21 = 0, s12 > 0, then (4.6) is turned to

s12 = −δ−1M1
1µ+ h.o.t. = 0, (4.7)

δ(w12
2 )−1(−δ−1M1

1µ+ h.o.t)(1+α(µ)) +M1
2µ+ h.o.t. = 0. (4.8)

If rank(M1
1 ,M

1
2 ) = 2, then, in {M1

1µ < 0, M1
2µ < 0}, (4.8) defines a (l−1)-dimensional surface L12

21 which
is tangent to L2 at µ = 0, such that, system (1.2) has a unique large homoclinic loop in the neighborhood
of Γ if µ ∈ L12

21 and µ� 1.
Similarly, in {M1

1µ > 0, M1
2µ > 0}, we can get the (l − 1)-dimensional surface L21

12 which is tangent to
L1 at µ = 0, such that, system (1.2) has a unique large homoclinic loop in the neighborhood of Γ if µ ∈ L21

12

and µ� 1.
If (4.6) has a solution s21 > 0, s12 > 0, then, making the derivative of (4.6) about µ, we get

(s12)µM
1
1 = −δ−1|M1

1 |2 +O(|µ|) +O(s
α(µ)
12 ),

(s21)µM
1
2 = δ−1|M1

2 |2 +O(|µ|) +O(s
α(µ)
21 ).

The above expressions show when |µ| � 1 and M1
i 6= 0, i = 1, 2, in L21

12, directional derivative of s12

along M1
1 is negative; in L12

21, directional derivative of s21 along M1
2 is positive. Notice that {µ : s12(µ) =

0, s21(µ) > 0} ⊂ L21
12, {µ : s21(µ) = 0, s12(µ) > 0} ⊂ L12

21 and {µ : s12(µ) = s21(µ) = 0} ⊂ L21
12 ∩ L12

21, then,
(4.6) has a solution satisfying s12 > 0, s21 > 0 if and only if µ ∈ R1, where, R1 is a area which have the
boundaries L21

12 and L12
21, and vector M1

1 directs to the outside of R1 from the boundary L21
12, M1

2 directs to
the inner of R1 from the boundary L12

21. So, if µ ∈ R1 and µ� 1, the system (1.2) has a large periodic orbit
in the neighborhood of Γ = Γ1 ∩ Γ2.

6

�
�
��M1

1

M1
2

L21
12

L12
21

0 L2

L1

α(µ) > 0

R1

Figure 10

6

�
�
��

M1
1

M1
2

L21
12

L12
21

0L2

L1

α(µ) < 0

R1

Figure 11

Case 2. α(µ) < 0

In this case, 1 + α(µ) < 1, by times scale transformations s12 → (s12)
1

1+α(µ) , s21 → (s21)
1

1+α(µ) , (4.6)
becomes
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{
−(w12

1 )−1s21 + (s12)
1

1+α(µ) + δ−1M1
1µ+ h.o.t. = 0,

(w12
2 )−1s12 − (s21)

1
1+α(µ) + δ−1M1

2µ+ h.o.t. = 0.
(4.9)

Thus, similar to that of Theorem 4.4, we have,

Theorem 4.5. If (H1)–(H4) are satisfied, |µ| � 1, α(µ) < 0, rank(M1
1 , M1

2 ) = 2, then, we have the
following (see Figure 11).

(1) In {M1
1µ < 0, M1

2µ < 0}, there exists a (l − 1)-dimensional surface L12
21 which is tangent to L1 at

µ = 0, and, in {M1
1µ > 0, M1

2µ > 0}, there exists a (l−1)-dimensional surface L21
12 which is tangent to

L2 at µ = 0, such that, the necessary and sufficient condition that system (1.2) has a large homoclinic
loop near Γ is µ ∈ L21

12 ∪ L12
21.

(2) There exists an area R1 that bounds with L21
12 and L12

21, vector M1
2 directs to the outside of R1 from L21

12,
and M1

1 directs to the inner of R1 from L12
21, such that, for µ ∈ R1, system (1.2) has a large periodic

orbit near Γ.

(3) For µ ∈ L = L1 ∩ L2, double homoclinic loops Γ is preserved.

Where, Li, i = 1, 2 are defined by M1
i µ + h.o.t. = 0 which are expressed by the two equations of (4.9)

satisfying s12 = s21 = 0. L12
21 defined by(
−δ−1w12

2 M
1
2µ+ h.o.t.

) 1
1+α(µ) + δ−1M1

1µ+ h.o.t. = 0,
and L21

12 defined by

−(δ−1w12
1 M

1
1µ+ h.o.t.)

1
1+α(µ) + δ−1M1

2µ+ h.o.t. = 0.

Case 3. α(µ) = 0
In this case, (4.6) becomes{

−(w12
1 )−1s21 + s12 + δ−1M1

1µ+ h.o.t. = 0,
(w12

2 )−1s12 − s21 + δ−1M1
2µ+ h.o.t. = 0.

(4.10)

So, (
s12

s21

)
= δ−1D−1

( (
M1

1 − (w12
1 )−1M1

2

)
µ(

(w12
2 )−1M1

1 −M1
2

)
µ

)
+ h.o.t. , (4.11)

where, D = (w12
1 w

12
2 )−1 − 1.

Denote M1
0 := (w12

2 )−1M1
1 −M1

2 , M2
0 := M1

1 − (w12
1 )−1M1

2 . Thus, we get the following theorem.

Theorem 4.6. Suppose that (H1)–(H4) hold, |µ| � 1. If α(µ) = 0, (w12
1 w

12
2 )−1 6= 1, rank{M1

1 ,M
1
2 } = 2,

then, (4.11) has a unique solution 0 ≤ s12(µ), s21(µ)� 1 satisfying s12(0) = s21(0) = 0. Moreover

(1) In the region {D−1M2
0µ > 0}, there is a (l− 1)-dimensional surface L12

21 which has normal vector M1
0

at µ = 0, such that for µ ∈ L12
21, (4.11) has a solution s21 = 0, s12 > 0, that is, system (1.2) has a

large homoclinic loop.

(2) In the region {D−1M1
0µ > 0}, there is a (l− 1)-dimensional surface L21

12 which has normal vector M2
0

at µ = 0, such that for µ ∈ L21
12, (4.11) has a solution s12 = 0, s21 > 0, that is, system (1.2) has a

large homoclinic loop.

(3) If µ ∈ L21
12 ∩ L12

21, then, (4.11) has a solution s12 = 0, s21 = 0, that is, system (1.2) has a double
homoclinic loops.

(4) If µ ∈ {D−1M2
0µ > 0} ∩ {D−1M1

0µ > 0}, then, (4.11) has a solution s12 > 0, s21 > 0, that is, system
(1.2) has a large periodic orbit.

Figures 12 and 13 are the bifurcation diagrams of Theorem 4.6.
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5. Conclusion

In this paper, we have discussed the bifurcation problems of double homoclinic loops with resonant
condition for higher dimensional system. In the parameter space, for the different values of α(µ), w12

1 , and
w12

2 , we obtain the existence, number and existence regions of the small homoclinic loops, periodic orbits,
and large homoclinic loops, periodic orbits, respectively.

Finally, combining the related results of Theorems 4.1–4.6, we can get the complete bifurcations figures
in the parameter space for the different values of α(µ), w12

1 , and w12
2 .

Theorem 5.1. Suppose that (H1)–(H4) hold, |µ| � 1, rank{M1
1 ,M

1
2 } = 2, then, we have the following

conclusions.

(1) For the case α(µ) > 0, 0 < w12
1 < 1, 0 < w12

2 < 1, the bifurcations figure is the combination of Figures
2, 4 and 10.

(2) For the case α(µ) < 0, w12
1 > 1, w12

2 > 1, the bifurcations figure is the combination of Figures 3, 5 and
11.

(3) For the case α(µ) > 0, 0 < w12
1 < 1, w12

2 > 1, the bifurcations figure is the combination of Figures 2,
8 and 10.

(4) For the case α(µ) > 0, w12
1 > 1, 0 < w12

2 < 1, the bifurcations figure is the combination of Figures 6,
4 and 10.

(5) For the case α(µ) > 0, w12
1 > 1, w12

2 > 1, the bifurcations figure is the combination of Figures 6, 8 and
10.

(6) For the case α(µ) < 0, w12
1 > 1, 0 < w12

2 < 1, the bifurcations figure is the combination of Figures 3,
9 and 11.

(7) For the case α(µ) < 0, 0 < w12
1 < 1, w12

2 > 1, the bifurcations figure is the combination of Figures 7,
5 and 11.

(8) For the case α(µ) < 0, 0 < w12
1 < 1, 0 < w12

2 < 1, the bifurcations figure is the combination of Figures
7, 9 and 11.

(9) For the case α(µ) = 0, w12
1 > 1, w12

2 > 1, D = (w12
1 w

12
2 )−1 − 1 < 0, the bifurcations figure is the

combination of Figures 6, 8 and 13.

(10) For the case α(µ) = 0, 0 < w12
1 < 1, 0 < w12

2 < 1, D = (w12
1 w

12
2 )−1 − 1 > 0, the bifurcations figure is

the combination of Figures 7, 9 and 12.
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(11) For the case α(µ) = 0, w12
1 > 1, 0 < w12

2 < 1, D = (w12
1 w

12
2 )−1 − 1 > 0, the bifurcations figure is the

combination of Figures 6, 9 and 12.

(12) For the case α(µ) = 0, w12
1 > 1, 0 < w12

2 < 1, D = (w12
1 w

12
2 )−1 − 1 < 0, the bifurcations figure is the

combination of Figures 6, 9 and 13.

(13) For the case α(µ) = 0, 0 < w12
1 < 1, w12

2 > 1, D = (w12
1 w

12
2 )−1 − 1 > 0, the bifurcations figure is the

combination of Figures 7, 8 and 12.

(14) For the case α(µ) = 0, 0 < w12
1 < 1, w12

2 > 1, D = (w12
1 w

12
2 )−1 − 1 < 0, the bifurcations figure is the

combination of Figures 7, 8 and 13.

For example, the bifurcations figure for the case (1) (α(µ) > 0, 0 < w12
1 < 1, 0 < w12

2 < 1) is the
following Figure 14, the bifurcations figure for the case (2) (α(µ) < 0, w12

1 > 1, w12
2 > 1) is the following

Figure 15. Here, the relative positions of Σ1, Σ2 and L21
12, L12

21 are determined by their expressions as follows:

(i) For the case α(µ) > 0, 0 < w12
1 < 1, 0 < w12

2 < 1,

M1
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