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Abstract

In this work, we study the bifurcation problems of double homoclinic loops with resonant condition
for higher dimensional systems. The Poincaré maps are constructed by using the foundational solutions
of the linear variational systems as the local coordinate systems in the small tubular neighborhoods of the
homoclinic orbits. We obtain the existence, number and existence regions of the small homoclinic loops,
small periodic orbits, and the large homoclinic loops, large periodic orbits, respectively. Moreover, the
complete bifurcation diagrams are given. (2016 All rights reserved.
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1. Introduction and Hypotheses

In the study of the complex dynamic behaviors of high-dimensional nonlinear dynamical systems, the
bifurcation problems of homoclinic orbits and heteroclinic loops have been becoming an important research
field. By using the traditional Poincaré map construction method, [I, 8, [I1] discussed the bifurcations
of non-degenerated homoclinic loops. In [13], Zhu discussed the bifurcation problems of non-degenerated
homoclinic loop by using the generalized Floquet theory. In [3, 4[5, 6], by using the foundational solutions of
the linear variational systems of the unperturbed systems along the homoclinic orbits as the local coordinate
systems to construct the Poincaré maps, the authors studied the bifurcations and stability of homoclinic
loops for higher dimensional systems. In [2, [10], the stability of double homoclinic loops was studied. In
[7, 12], Lu and Zhang studied the double homoclinic loops bifurcations under the non-resonant condition.
In this paper, we study the bifurcations of double homoclinic loops under the resonant condition for higher
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dimensional systems. In this case, we get the complete bifurcation diagrams. Specially, we obtain the more
complex bifurcation phenomena than that of [12].
Suppose the following C" system

z=f(2), (1.1)

where 7 > 5, z € R™™" satisfies the following hypotheses.

(H1) (Hyperbolicity) z = 0 is the hyperbolic equilibrium of system , the stable manifold W and
the unstable manifold W' of z = 0 are m-dimensional and n-dimensional respectively. A\; and —p; are
simple eigenvalues of D f(0), such that any other eigenvalue o of D f(0) satisfies either Rec < —py <
—p1 < 0or Reo > A\g > A1 > 0, where \g and pg are some positive numbers.

(H2) (Non-degeneration) System (1.1) has a double homoclinic loops I' = T'; UT'9, I'; = {z = r;i(¢) :
t € R,ri(£o0) =0}, i =1,2. For any P € T, codim(TpW{ + TpW{) = 1, where, TpW§ and TpW}
are the tangent spaces of W§ and W' at P respectively.

(H3) (Strong inclination) tlier (T, xyWs + T, nyWyo') = ToWs @ ToWg™, ltlim (T, yW§ + T,y W) =
—+o00 ——00

ToWs® @ ToWg', where @ = 1,2, Wi* and Wi are the strong stable manifold and the strong unstable

manifold of z = 0 respectively, ToWi*® is the generalized eigenspace corresponding to those eigenvalues

with smaller real part than —pg, To W' is the generalized eigenspace corresponding to those eigenvalues
with larger real part than Xg. Let e = tlim () /|7 (t)], ef € ToWY and e; € ToyW§ are the
—Foo

2

unit eigenvectors corresponding to A\; and —p; respectively. e] = —ej, e] = —e,. span (ToW,

el) = ToW{, span (ToW§s, e; ) = TyW§.
(H4) (Resonance condition) p; = A;.

Now, we consider the bifurcation problems of the following C" system

2= f(2) +9(z,p), (1.2)

where p € RY, 1>3,0 < |u| < 1, g(0, 1) = g(2,0) = 0.

2. Local coordinate systems

Suppose that (H1)—(H3) are established. Then, for |u| < 1, in the small enough neighborhood U of
z = 0, we introduce a C" transformation such that system ([1.2]) has the following form

=)+ Jz 4+ u[O(y) + O(v)],

y=1[=m@p)+--- Jy +v[0(z) + O(u)], (2.1)
w=[Bi(p)+--- Ju+z[O(z) + O(y) + O(v)], '
0 =[=Ba(p) +---- Jo+y[0(z) + O(y) + O(u)],

where z = (z,y,u*,v*)*, 2 € R, y € R, w € R" !, v € R™ !, ¥ means transposition, A{(0) = p1(0),
Reo(B1(p)) > Mo, Reo(—Ba(1)) < —po. Moreover, the unstable manifold, stable manifold, strong unstable
manifold, strong stable manifold and local homoclinic orbits have the following forms, respectively

Wiee ={y=0,v=0}, Wp. ={r=0,u=0,},
I/Vl%g—{x:(),yzo,v:(]}, Wlf)‘i_{xzo,u:(),y:()},

CinWh. ={y=0v=0u=wu(x)}, T/inW; ={z=0u=0,v=uvy)},

= 0;(0) = 0.
I(t ) ( (t)) ( {(t))*)*, i =1,2. Suppose that 71 (=T1) = (4,0, 47 ,,,0")*, r1(T1) =

where ¢ = 1,2, u;(0) = %;(0 ) 0, v;(0) =
t),r;
) = (=6,0,43, ) , r2(T2) = (0,-4,0%, &5,)*, where, T; > 0, i = 1,2, 0 is small

Denote r;(t) = (r¥(t),
(0,6,0%, 67,)", ra(—

@
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enough such that {(z,y.u,v) :|e|Jyl.Jul.Jo| < 25}C U. Obviously, we have |§..| = (), 5| = O(6=2),

(Bl(u)) — Ra2(B2(w))
= Re? () >.1, ws = Re o (1) > 1.
Cons1der the linear system

2= (Df(ri(t)))z. (2.2)

Similar to [3} 5, 6} [7, 12], system (2.2]) has a fundamental solution matrix Z;(t) = (2} (t), 22(t), 23(t), z}(t))
satisfying

Zé(t) € (T, ()WS)C ( rz(t)W“)
z(t) = (—3 1)17“i(t)/\7“§’§ z_\l T.oyW* N T, W,
22(t) = (Za’l(t)v e ,Zi’n _1( ) € (T, yW*) N (T, iy W") = T,y W™,
Z?(t) = (ZZ.’ (t), » % o (t)) € (Tn(t)Ws) N (TTi(t)Wu)c = Tri(t)Wss,
and 1 0 w31 0 wl w0 wit
) 1 (3
0 1 w32 0 w2 0 0 w?
Zi(T;) = 0 0 w33 HE Zi(-T;) = wB W T wB |
wit, w? w34 I 0, O 0 wi

where i = 1,2, w?! < 0, w}? # 0, detw?’?’;zré 0, det w # 0, and |w;” (w}?)~! < 1, j # 2; [w? (W)™ <« 1,
j =34 I wP) N < 1, j £ 3 |w‘“( D1, A4

Denote ®;(t) = (¢} (1), d2(t), ¢3(t), P (¢ )) (Z; ( )N*, i = 1,2, so, ®;(t) is a fundamental solution
matrix of the adjoint system ¢ = (Df(rZ )*¢ of (2.2)), and ¢} (t) € (T, (W) (T, yW™)¢ is bounded
and tends to zero exponentially as t — :too[4 7,19, 12 13]

We select 2} (t), 22(t), 23(t), z}(t) as the local coordinate systems along I';, i = 1, 2.

Let A; = w}?/|w}?|, i = 1,2. We say that I'; is non-twisted as A; = 1, and twisted as A; = —1. In this
paper, we consider the case A1 = Ay = 1.

3. Poincaré Maps and the bifurcation equations

Denote h;(t) = ri(t) + Zi(t)N,
|z, |yl |ul, [v] < 26} C U, S+ {z
and t = T;, respectively.

Now, we set up Poincaré maps. (Figure

Ni(t) = (n},0,(nd)", (nj)")*, i = 1,2, let S7 = {z = hi(-T) :

7

);
hi(T;) = |x|, |yl, |u|, |[v| <28} C U be the cross sections of I'; at t = —T;

it

TOWSS

Figure 1
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In U, denote Fyy : S5 — ST, Fa(3’ ) = /%% Fio 0 ST = Sy, Fua(ad’™) = 5% FL - ST — ST,
Fl(’2j+1) = (ﬁjw; F} . S5 — S, FQ(’QJH) = (jgJJF ; where ¢ = 1,2, j = 0,1,---. In the tubular
neighborhood of T';, let F? be the map from S; to S;", Ff(qu) = qZZJJrl Ff((j?]) = qZQJH, where i = 1,2,
j = 17 27 T

At first, we set up the relationship between the Cartesian coordinates and the normal coordinates of the
points in the neighborhood of homoclinic loop. Let

G R Ty (0272 < () Z(-TN,
2542, 2542 _2j+2 (2] -2 V2
1o Ty T 0 (02D = ) 4 ZTON,
) ) =T + 2N T
g @ g @ 0T = (T + Z(T)NTT
2j+2 2j+2 2j+2,3 2j+2,4
Nzéjil = (néjilv} 0, (715:173)*, (nz;il 4)*)*7
N2 e 0 o) O
]Yzé]-+1 (’Fléj'+171,07 (ﬁéj-+173)*7( Z23'+1 4)*)*7
N7 = (7,0, (70, ()
By Z; 1(Ty), Z; '(=T,), we get
2j 2j+2 2j+1 2j+2
ylﬁ_l%(s, 331]+ ~ 0, y2]+ ~ —0, x2]+ ~ =0 (3.1)
and 9ii91 2742 2j+2
P B
WIS B i) TR g ()1 32
2j+2,4 " a4y-1 212
n; _( w; ) Y; ’
n2j+11 2;+1 wgl(wsza)—lu?jﬂ
7 ) ’
2J+13 = (w 5,3) 1“§j+1a ' (3.3)
Z2J+14 w14x23+1+ci(w33) 1 2J+1—|—U2J+1—5“},
where, b; = wlwB (W)~ — wh, a; = —wh + WBW?2) w2 — WA W) [—wl + w (w!?) w2,
¢ = (wH 31+w24 32 _ g3y,

As well the relatlonshlp between the two kinds coordinates of q2] +2 _23 1 also satisfies (3.1] , and

(3-3)-
Now, we consider the map F?. Substituting transformation z = h;(¢) into (1.2), and using 7;(t) =
F(ri(8), Zi(t) = Df(ri(t)) Zi(t), we get

Zi(t)(n},0,(n?) , (n}) )* = gu(ri(t),0)u + h.o.t. .
Multiplying the both sides of the above equation by ®(¢) and using ®}(t)Z;(t) = I, we have

(n,0,(nf) , (nf) )" = @ ()gu(ri(t),0)u+ h.ot. .
Integrating it, we have F? defined by the following

. k=1,3,4, 3.4
ﬂ?]‘f‘?),k? 77L2]+2 k + Mk‘/J, + h o.t. ( )

)

{ n?j+3,k 2]+2k i M’m T hot.

where, MF = [T2°(F(£))*g,(ri(t), 0)dt, k = 1,3,4, i = 1,2.
Next, we consider the map in U. For convenience, we may assume pi(u) = (1 + a(u))\(p), where,
a(p) € R, la(p)| <1, a(0) = 0.
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Assume that 1o; is the flying time from ¢ to ¢, 712 is the time from ¢f to ¢3, 71 is the time from ¢} to
cj%, 79 is the time from q’% to (j%. Set s; = e~ )7 7 =21,12,1, 2, which are called the Silnikov times. By
, we have

x=eMWUT=7)32 L hot | y=e (a1l 4 pot.
w=eBrWt=T=-12 L hot. , v=e BTyl L pot. .

Neglecting the higher order terms, the above formulas defined the following maps:

Fl: 2zl = sy, 73 = 6s§1+a(”)), Uy ~ s, Biln)/ 2 n )ul, SR Ba(1)/ 2 )vl. (3.5)
F}: 2~ —6s9, 73 = —(5sél+a(“)), s ~ SQBI(“)/)\I(M)I’L%, T8~ 552(“)/)‘1(“)@%. (3.6)
Py wym Osa1, i~ —0shy 0, g mosg M O0R o g 00/ 00, (3.7)
Fiy: :c% ~ —0512, Ys & 58(1+a(“)), ut ~ s%(u)/)\l(u)u%, vy R SBQ(M)/)Q(H)’U%. (3.8)
At last, by . and (| . ., we can get Poincaré maps as follows:
F1 Fl OFI is
T—Liil )~16s (1+0‘(“))+M1u+hot

( 12
A = 2 51— by (wd2) 1650 L Mt hot (3.9)
ﬁi’A = (w‘ll‘l) 1 1182( m)/Ar) g1 oh +Mfu+ h.o.t. .
Fy=F}oF}is
ﬁ:; 1_ (w%Q)—lés(lJra(#)) + M+ hot.
Ay = 03 — 0y — by(wh?) "1 ey W) 4 M3M + h.ot., (3.10)
—%4 = (w %4) 1 1292( 1)/ (w) %—i—Mﬁl/L-i-h-O-t. )

F1 = F12 OF21 is
ni”l _ ( 12)—153(1+a(u)) + Mlp+ hot.

33 =u? — 61y — b1 (wi?)~ 155(1+a(“)) + M3u+hot., (3.11)
ni"‘ (wit) 1O 0y o

F2 :F220F12 is

ng 1 _ ( 12)—155514’0‘(“)) + M21u + h.o.t.
ng = = u3 — b9y + ba(w] )_158(1+a( ) + M3p+ h.ot., (3.12)

24_( 44)-1 Bz( )/Al(u)v + Miu+hot. .

Meanwhile, we get the successor functions as follows:
G (s1,12,5)) = (G, G3.G) = (Fi(ah) — @) is

Gl = o[(w!?)~ (M) g+ Miu+ hot.

= _ — 14+ _1. B A _

G8 = @ — 61u — br(w]?)1as{ T ()1 M g2 (3.13)
+M}pu+ hot.

Gi= —vl+ 61, +wités) + (w‘f‘l)*ls?(“)//\l(“)@% + Mip+hot. .

Ga(s2, 13, 73) = (G5, G5, G3) = (Fa(3) — @3) is

Gy = 8[—(wf) L ") s+ M+ hoct.

= _ — a —1 B A

G3 = @2 — 0au — by(wh?) 155g1+ W) _ (w33~ (k) /A (p )u2 (3.14)
+M3p+ h.ot.

Gh = —bl + 8gy — wht6sy + (W) "L/ NGl L N L hot
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G(812,821,U%,U%,1}%,U%) = (G%a G?aG%aG%a G37G§) = (Fl((J%) - Q%7F2<Q%) - Q%) is

(Gl = 5[—(w%2)*lsgll+a(“)) + s12) + Mip + hot.
G3= u?— 6y — bl(w%z)*lésgﬁa(“)) _ (w§3)71811321(u)//\1(u)ug
+Mp+ hot.
Gl = —vi+ 61, —witdsiy + (w‘lm)*lsng(“)/)‘l(“)v% + Mip+ hot. (3.15)
Gl —  §l(wl2)-1 (A4a(p) Ml h :
3 [(w3?) "' sy 821]1—|- 51+ h.o.t. T
G3= u2— 6y + bQ(w52)—153§;a<“” _ (wgf})—lsﬂl(ﬂ)/ 1(#)1@
+M3p+ hot.
G‘Ql = —vd + 89y + widser + (w§4)*1311322(“)/)‘1(“)v% + M24u + h.ot. .
Thus, we get the three bifurcation equations as follows:
Gi(s1, 41, 01) = (G1, G, GY) =0, (3.16)
Ga(s2,u3,1y) = (G3,G3,G3) = 0. (3.17)
G(s12, 891,43, u3,v1,v3) = (G1, G}, G1, G}, G5, G3) = 0. (3.18)

Obviously, for system , there is an one to one correspondence between the 1-homoclinic loops and 1-
periodic orbits bifurcated from I' and the solutions of the bifurcation equations satisfy s; > 0, j = 1,2,21, 12.

We call the 1-homoclinic loop and 1-periodic orbit bifurcated from single homoclinic loop I'; as small
homoclic loop and small period orbit, respectively; call the 1-homoclinic loop and 1-periodic orbit bifurcated
from I' = I'y U9 as large homoclic loop and large period orbit, respectively.

4. Resonant bifurcations

At first, we consider the bifurcations of the single homoclinic loop I';, i = 1, 2.

Theorem 4.1. Suppose (H1)—(H4) are fulfilled, |u| < 1, a(u)(1 —wi?) > 0. If M}tp # 0, then, there exist
two (I — 1)-dimensional surfaces ¥; € {p : a(p)(—=1)* *Miu > 0}, and L;, which have the same normal
vector M}, such that

(1) System (1.2)) has a unique 2-multiple 1-periodic orbit near T'; if and only if u € %;.
(2) System (1.2)) has no 1-homoclinic and 1-periodic orbit near T'; if and only if

pe {alp) > 0,(=)™ M > (=) Bi(1)} or p e {a(p) < 0,(=1) M < (=1)5i(w)}-
(8) System (1.2)) has exactly two 1-periodic orbits near T'; if and only if

pe {a(u) > 0, (=) B () < (=)™ Mip < (=1)"Bi(p)}

pe {alu) <0, (=) Bi(n) < ()M < (=1)7 B (1)}
(4) System has exactly one 1-homoclinic orbit and one 1-periodic orbit near I'; if and only if u € L;.
(5) System has exactly one 1-periodic orbit near I'; if and only if
pe{a(n) > 0,(=)™ Mip < (~1)" 8 (1)} or p e {a(p) <0, (1) Mip> (1) 5 ().
Where, fori=1,2, L; := {u: M}u= %)} is a surface defined by
sl o) = wl2(s; + (=10 M}lp) + hooit. (4.1)
with s; = 0, X; is a surface defined by

M} = Bi() = (~1) 1 8(w!®) 7 a(p)(1 + a(w) "7 + hod. . (4.2)
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Proof. For I'y, it is easy to see that, for 0 < sy, |u| < 1, equation (G3,G}) = 0 of (3.16) always has a unique

solution @? = w3 (s1, ), v = 1(s1, ). Substituting it into G1 = 0, we get the bifurcation equation as

S[(wi2) L s ) _ g1 4 M+ hot. = 0. (4.3)
Similarly, about the bifurcation of I'y, we have the bifurcation equation as
(5[—(w%2)_1sgl+a(“)) + so] + My + h.ot. = 0. (4.4)

By the analysis of the existence of solutions of the equations (4.3) and (4.4) which satisfy s; > 0, we
get the results of the theorem. The method of the analysis is similar to that of [3], we don’t state in detail
here. O

> is called 2-multiple 1-periodic orbit bifurcation surface, L; is called 1-homoclinic orbit bifurcation
surface. The bifurcations diagrams of Theorem [4.1] are the Figures and

\\\ 14
R

Ry ) R2 '
}V:’ 1 :' 2 "":,
L |

alp) > 0,0 <wi?<1 alp) < 0,wi? > 1

Figure 2

Figure 3

a(p) < 0,wi? > 1

Figure 4 Figure 5

Theorem 4.2. Suppose (H1)—(H4) are fulfilled, |pu| < 1, a(p)(1 — wi?) < 0, then, we have
(1) If (=D)L a(p)(Mip — BY(n)) > 0, then, system (1.2)) has a unique 1-periodic orbit near T';.
(2) If (=1 a(p)(Mip — B2 (1)) <0, then, system (1.2)) has no 1-periodic orbit near T';.

Proof. By the definition of L; and some simple analysis for the intersection points of the curve Y = ;1 (1)
and the line Y = w}?(s; + (—1)*0 M} ) + h.o.t., we get the conclusions of this theorem. O

Theorem 4.3. Suppose (H1)—(H4) are fulfilled, |u| < 1, a(p) = 0, wi? # 1. If M}y # 0, then, we have
the following.

(1) System (1.2) has a unique 1-periodic orbit near T'; if and only if [(wi?)~t — 1]~ (=1)"" Mlu < 0.
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(2) System (1.2)) has no 1-homoclinic orbit and 1-periodic orbit near T'; if and only if
(! = 17 ) M > 0.

(2

(3) System (1.2)) has exactly a unique 1-homoclinic loop near T'; if and only if p € L;, where, L; is defined
by the following equation with s; = 0.

S[(wi?) ™t = 1)s; + (1) M} 4+ hoot. = 0. (4.5)
Proof. If a(p) = 0, then, by (4.1)), we only need to consider the solution of bifurcation equation (4.5)).
So, if (wi?)~! # 1, we have the unique solution s; = (=1)*~(w}?) =t — 1] M} + h.o.t.. O
For the bifurcations diagrams of Theorem 4.2 and Theorem [4.3] see the Figures [6] and [9
1
M} M My M}
Ly ,L RY R}
1 ()%? e N2 2 Lo

a(p) > 0,wy* > 1 12
< 1
a(p) >0,wi?>1 a(p) <0,0<wi?<1 (1) < 0,0 <wy” <

. Fi
Figure 6 Figure 7 Figure 8 tgure 9

Next we discuss the large 1-homoclinic loop and large 1-periodic orbit bifurcated by I' = I'y U I's, that
is, discuss the solutions Q(si2, s21,u?,u3,vi,v3) of the bifurcation equation which satisfy s;5 > 0,
s91 > 0. By (3.15)), for 0 < s12, 591, |u| < 1, the equation (G3, G1,G3,G3) = 0 always has unique solution
u% = u%(821,812,,u,), u% = u%(821,812,,u), U% = U%(821,812,,u), 2}% = U%(821,812,,u). Substituting it into
(G}, GY) =0, we have

(4.6)

5[—(w%2)_lsgll+a(“)) + s12] + Mip + h.ot. =0,
5[(w%2)*1s§12+a(“)) — 891] + Mipu + h.ot. = 0.

Case 1. a(u) >0
In this case, we have the following conclusions.
Theorem 4.4. If (H1)—(H4) are satisfied, |p| < 1, a(u) > 0, rank(Mi, M}) = 2, then, we have the
following (see Figure .
(1) In {M}pu < 0, M}p < 0}, there exists a (I — 1)-dimensional surface Li? which is tangent to Ly at
=0, and, in {M{u >0, Mju > 0}, there exists a (I—1)-dimensional surface L33 which is tangent to
Ly at p =0, such that, the necessary and sufficient condition that system (1.2|) has a large homoclinic
loop mear T is p € L33 U L33,

ere exists an area Ry that bounds wi an , vector irects to the outside of Ry from Lis,

2) Th jst Ry that bounds with L2 and L12, vector M} directs to the outside of Ry from L2}
and M3 directs to the inner of Ry from L%, such that, for u € Ry, system (1.2)) has a large periodic
orbit near I

(8) For p € L = Ly N Ly, double homoclinic loops T' is preserved.
Where, L;, i = 1,2 are defined by Ml-l,u + h.o.t. = 0 which are expressed by the two equations of (|4.6))
satisfying s12 = s21 = 0. L33 defined by
(ws2) N (=0~ M p + h.ot) 1+ 4 571N 14 hoot. = 0,

and L% defined by
(wi2)=1(6 1 Mlp + h'o.t_)(lJra(H)) — 5 IMip+hot =0.
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Proof. By (3.15]), we have 6(G%,G%,G?,G%,G%,G%)/@QI(Q#):O = diag(d,—0,1,1,—1,—1) +(gi;), where,
except gs1 = wi'd, g2 = —w3*6, other elements of (g;;) are all zero. So, [|0G/9Q)|q,m=oll # 0. According
to the implicit function theorem, we have, near (@, u) = (0,0), the equation (3.18) has a unique solution

so1 = s21(p), ul = ui(p), v} = vi(p), s12 = s12(p), us = ud(p), vy = v3(p),

satisfies s21(0) = 0, s12(0) = 0, u3(0) = 0, u3(0) = 0, v{(0) = 0, v3(0) = 0.

If has a solution sj2 = s9; = 0, then (4.6) is turned to Mil,u + hot. = 0,43 = 1,2. So, if
rank(M], M}) = 2, then, when g € L = L1 N Ly and |u| < 1, double homoclinic loop I' are preserved,
where, L1, Lo are expressed by the two equations of satisfying s1o0 = s91 = 0.

If has a solution s9; = 0, s12 > 0, then is turned to

s19 = —0 'Mipu+ hot =0, (4.7)

§(ws) "N (=67 M}y + heot) W) L MLy 4 hot. = 0. (4.8)

If rank (M7, M3) = 2, then, in {M{p < 0, Mju < 0}, defines a (I —1)-dimensional surface L}? which
is tangent to Lo at p = 0, such that, system has a unique large homoclinic loop in the neighborhood
of Tif p € L and p < 1.

Similarly, in {M{p > 0, MJu > 0}, we can get the (I — 1)-dimensional surface L23 which is tangent to
Ly at g = 0, such that, system has a unique large homoclinic loop in the neighborhood of T if u € L2}
and p < 1.

If has a solution s91 > 0, s12 > 0, then, making the derivative of about u, we get

(s12)u M} = =5 M] 2 + O(Ju]) + O(s55),

(521)u M3 = 5 M2 + O(|ul) + O(s51).

The above expressions show when |u| < 1 and Mz-1 #0,i=1,2,in L%, directional derivative of sq9
along M{ is negative; in L12, directional derivative of so; along M4 is positive. Notice that {u : s12(u) =
0,891(p) > 0} € L33, {12 so1(p) = 0,812(p) > 0} C L2 and {p : s12(p) = s21() = 0} € L3 N LI3, then,
has a solution satisfying s1o > 0, s91 > 0 if and only if 4 € R;, where, R; is a area which have the
boundaries L3} and Li?, and vector M; directs to the outside of Ry from the boundary L3i, MJ directs to
the inner of Ry from the boundary L}2. So, if 4 € Ry and p < 1, the system has a large periodic orbit
in the neighborhood of I' =T'; N T's. O

ap) <0

Figure 11

Figure 10

Case 2. o(u) <0
1

1 1
In this case, 1 + a(u) < 1, by times scale transformations sjo — (s12) oW, s91 — (s921) 7@ | (4.6)
becomes
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{ —(wi?) s + (812)“;“‘) + 6 M+ hot. =0, (4.9)
( .

1
%2) 1812 — (821)1+°‘(”) + 5_1M21,u + h.o.t. = 0.
Thus, similar to that of Theorem [4.4] we have,

Theorem 4.5. If (H1)—(H4) are satisfied, |u| < 1, a(p) < 0, rank(M{, M3) = 2, then, we have the
following (see Figure .

(1) In {M}pu < 0, M}p < 0}, there exists a (I — 1)-dimensional surface Li? which is tangent to Ly at
=0, and, in {M{u >0, Mju > 0}, there exists a (I—1)-dimensional surface L2} which is tangent to
Ly at p =0, such that, the necessary and sufficient condition that system (1.2|) has a large homoclinic
loop mear T is p € L33 U L33,

(2) There exists an area Ry that bounds with L3} and L3, vector M3 directs to th,e outszde of Ry from L3},
and Mi directs to the inner of Ry from L33, such that, for u € Ry, system (1.2)) has a large periodic
orbit near I

(8) For p € L = L1 N Ly, double homoclinic loops I" is preserved.
Where, L;, i = 1,2 are defined by Mil,u + h.o.t. = 0 which are expressed by the two equations of (4.9))
satisfying s12 = so1 = 0. L2 defined by
1
(=6~ tw? M3y + h.o.t.) o0 + 6 My + h.ot. =0,
and L2} defined by
1
—(07 Ml p + h.ot.)He® + 6 M+ h.ot. = 0.

Case 3. a(u)=0
In this case, (4.6) becomes

—(wi?)"tso1 + s12 + 6T M{p+ hoot. = 0, (4.10)
(wa?)"ts12 — so1 + 0 ' Map+ hoot. = 0. .
So,
12\ _so1pr (ML= (wi)7IMy) o
( ) 0P < ((w)0af = ) ) T (1)

where, D = (wi?wi?)~! — 1.
Denote M} = (w3?)"*M]} — M3, Mg := M} — (w}?)"1M3. Thus, we get the following theorem.

Theorem 4.6. Suppose that (H1)—(H4) hold, |u| < 1. If a(p) = 0, (wi?wi?)~t # 1, rank{ M, M]} = 2,
then, (4.11)) has a unique solution 0 < s12(u), s21(p) < 1 satisfying 512(0) = 521(0) = 0. Moreover

(1) In the region {D~*MZu > 0}, there is a (I — 1)-dimensional surface L2 which has normal vector M}
at pp = 0, such that for p € L2, (4.11) has a solution so1 = 0, s12 > 0, that is, system (1.2) has a
large homoclinic loop.

(2) In the region {D~*M}p > 0}, there is a (I — 1)-dimensional surface L33 which has normal vector Mg
at pu = 0, such that for p € L3, (@.11)) has a solution sz = 0, so1 > 0, that is, system (1.2)) has a
large homoclinic loop.

(3) If p € L% 21, then, ) has a solution s1o = 0, so1 = 0, that is, system ) has a double

homoclinic loops.

(4) If p € {D7'MZu > 0} N {D~ M}y > 0}, then, ([4.11) has a solution s13 > 0, sa1 > 0, that is, system
(1.2) has a large periodic orbit.

Figures [12] and [I3] are the bifurcation diagrams of Theorem
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M} L
TN, Mg
0 50 Ry
Ly
alp)=0,D >0 alp)=0,D <0
Figure 12 Figure 13

5. Conclusion

In this paper, we have discussed the bifurcation problems of double homoclinic loops with resonant
condition for higher dimensional system. In the parameter space, for the different values of a(u), wi?, and
w%Q, we obtain the existence, number and existence regions of the small homoclinic loops, periodic orbits,
and large homoclinic loops, periodic orbits, respectively.

Finally, combining the related results of Theorems we can get the complete bifurcations figures
in the parameter space for the different values of a(p), wi%, and wi?.

Theorem 5.1. Suppose that (H1)—(H4) hold, |u| < 1, rank{ M}, M3} = 2, then, we have the following

conclusions.

(1) For the case a(p) >0, 0 < wi? < 1, 0 < wi? < 1, the bifurcations figure is the combination of Figures

and [10]

(2) For the case a(p) < 0, wi? > 1, wi? > 1, the bifurcations figure is the combination of Figures and
[Tl

(3) For the case a(p) > 0, 0 < wi? < 1, wi? > 1, the bifurcations figure is the combination of Figures
and [10L

(4) For the case a(p) > 0, wi? > 1, 0 < wi? < 1, the bifurcations figure is the combination of Figures @
4 and 10l

(5) For the case a(p) > 0, wi? > 1, wi? > 1, the bifurcations figure is the combination of Figures@, and
[0l

(6) For the case a(u) < 0, w2 > 1, 0 < wi? < 1, the bifurcations figure is the combination of Figures
and [T

(7) For the case a(u) < 0, 0 < wi? < 1, wi? > 1, the bifurcations figure is the combination of Figures
B and 111

(8) For the case a(p) < 0, 0 < wi? < 1, 0 < wi? < 1, the bifurcations figure is the combination of Figures

[7, [9] and [11]

(9) For the case a(p) = 0, wi? > 1, wi? > 1, D = (w?wi?)~' — 1 < 0, the bifurcations figure is the
combination of Figures [6] [§] and [13]

(10) For the case a(p) =0, 0 < wi? <1, 0 <wi? <1, D = (wi*wi?)~! — 1 > 0, the bifurcations figure is
the combination of Figures[7], 0] and [12]
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(11) For the case a(p) =0, wi? > 1, 0 < wi? <1, D = (wi?w}?)™t — 1 > 0, the bifurcations figure is the
combination of Figures [6] [0] and [12]

(12) For the case a(p) =0, wi? > 1, 0 < wi? < 1, D = (wi?w}?)~! — 1 < 0, the bifurcations figure is the
combination of Figures [6] [9] and [13]

(13) For the case a(p) =0, 0 < wi? <1, wi? > 1, D = (wi?w}?)™t — 1 > 0, the bifurcations figure is the
combination of Figures [7] [§ and [12]

(14) For the case a(p) =0, 0 < wi? <1, wi? > 1, D = (wi?w}?)~! — 1 < 0, the bifurcations figure is the
combination of Figures and [13]
12 12

For example, the bifurcations figure for the case (1) (a(p) > 0, 0 < wi® < 1, 0 < wy” < 1) is the
following Figure the bifurcations figure for the case (2) (a(u) < 0, wi? > 1, wi? > 1) is the following
Figure Here, the relative positions of 31, 39 and L2}, L% are determined by their expressions as follows:

(i) For the case a(p) >0, 0 < wi? < 1,0 < wi? < 1,
Mlllu"uEL% > Mllﬂ‘uezl > 07 M%M‘MEL%% < M21/1'|/L622 <O0.
(ii) For the case a(u) <0, wi? > 1, wi? > 1,

1 1 1 1
Myplyerie < Miplues, <0, Mypluerz > Miplues, > 0.

a(p) > 0,0 <wi> <L,0<wy® <1 ap) <0,w2>1w?>1

Figure 14 Figure 15
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