Available online at www.isr-publications.com/jmcs J. Math. Computer Sci. 16 (2016), 154–164 Research Article

Online: ISSN 2008-949x

Journal of Mathematics and Computer Science

Journal Homepage: www.tjmcs.com - www.isr-publications.com/jmcs

Some extensions for generalized (ϕ,ψ) -almost contractions

Esra Yolacan^{a,*}, Mehmet Kır^b, Hukmı Kızıltunc^c

^aRepublic of Turkey Ministry of National Education, Tokat, Turkey.

^bDepartment of Civil Engineering, Şırnak University, Şırnak, Turkey.

^cDepartment of Mathematics, Ataturk University College, Erzurum, Turkey.

Abstract

In this paper, we derive a new fixed point results in partially ordered *b*-metric-like spaces. Our results generalize and extend several well-known comparable results in the literature. Further, two examples are also given to show that our results are influential. C2016 All rights reserved.

Keywords: b-metric-like, common fixed point, fixed point, ordered set. 2010 MSC: 47H10, 54H25.

1. Introduction

In 1922, the Polish mathematician Stefan Banach established an attention grabbing fixed point theorem known as the "Banach Contraction Principle" (BCP) [3] which is one of the pivotal results of analysis and considered as the pivotal source of metric fixed point theory. Generalization of this BCP have been studied excessively (see [5, 6, 8] and [10]). Nominately, Jaggi [5] proved a theorem satisfying a contractive condition of rational type on a complete metric space. In 2010, Harjani et al. [6] showed the ordered version of this theorem proved by Jaggi. Luong and Thuan [8], in 2011, generalized the results of Harjani et al. [6]. Recently, Mustafa et al. [10] proved the following theorem involving a generalized (ϕ, ψ) –almost contraction.

Theorem 1.1 ([10]). Let (X, \leq) be a partially ordered set. Suppose there exists a metric d such that (X, d) is a complete metric space. Let $f : X \to X$ be a nondecreasing mapping which satisfies the inequality

Received 2016-01-03

^{*}Corresponding author

Email addresses: yolacanesra@gmail.com (Esra Yolacan), mehmetkir04@gmail.com (Mehmet Kır), hukmu@atauni.edu.tr (Hukmi Kızıltunc)

$$\phi \left(d \left(fx, fy \right) \right) \le \phi \left(M \left(x, y \right) \right) - \psi \left(M \left(x, y \right) \right) + L\phi \left(\min \left\{ d \left(x, fx \right), \ d \left(y, fy \right), \ d \left(x, fy \right), \ d \left(y, fx \right) \right\} \right)$$

for all distinct points $x, y \in X$ with $y \leq x$ where $\phi \in \Phi, \psi \in \Psi, L \geq 0$ and

$$M(x,y) = \max\left\{\frac{d(x,fx) d(y,fy)}{d(x,y)}, \ d(x,y)\right\}.$$

Also, assume either

- (i) f is continuous or;
- (ii) if $\{x_n\}$ is a nondecreasing sequence in X such that $x_n \to \omega$, then $\omega = \sup\{x_n\}$.

If there exists $x_0 \in X$ such that $x_0 \leq fx_0$, then f has a fixed point.

Inspired and motivated by this facts, we are to generalize the above results for a mapping $f : X \to X$ satisfying a generalized (ϕ, ψ) -almost contraction in partially ordered *b*-metric-like spaces. Two examples are also given to show that our results are influential.

2. Preliminaries

Definition 2.1 ([1]). Let X be a nonempty set and $\kappa \geq 1$ a given real number. A function $A: X \times X \to \mathbb{R}^+$ is b-metric-like if, for all $x, y, z \in X$, the following conditions are satisfied:

- (A1) if $A(x, y) = 0 \Rightarrow x = y$;
- (A2) A(x, y) = A(y, x);
- (A3) $A(x, y) \le \kappa [A(x, z) + A(y, z)].$

A *b*-metric-like space is a pair (X, A) such that X is nonempty set and A is *b*-metric-like on X. The number κ is called the coefficient of (X, A).

Proposition 2.2 ([1]). Let (X, A) be a b-metric-like space. Define $A^p : X \times X \to [0, \infty)$ by $A^p(x, y) = |2A(x, y) - A(x, x) - A(y, y)|$. Frankly, $A^p(x, x) = 0$ for all $x \in X$.

Each *b*-metric-like A on X generates a topology τ_A on X whose base is the family of all open A-balls $\{D_A(x,\varepsilon) : x \in X, \varepsilon > 0\}$, where

$$D_A(x,\varepsilon) = \{a \in X : |A(x,a) - A(x,x)| < \varepsilon\}$$

for all $x \in X$ and $\varepsilon > 0$.

Definition 2.3 ([1]). Let (X, A) be a *b*-metric-like space with coefficient κ , and let $\{x_n\}$ be any sequence in X and $x \in X$. Then,

- (a) a sequence $\{x_n\}$ is convergent to x with respect to τ_A , if $\lim_{n\to\infty} A(x_n, x) = A(x, x)$;
- (b) a sequence $\{x_n\}$ is a Cauchy sequence in (X, A) if $\lim_{n,m\to\infty} A(x_n, x_m)$ exists and is finite;
- (c) (X, A) is a complete *b*-metric-like space if for every Cauchy sequence $\{x_n\}$ in X there exists $x \in X$ such that $\lim_{n,m\to\infty} A(x_n, x_m) = \lim_{n\to\infty} A(x_n, x) = A(x, x)$.

It is obvious that the limit of a sequence in b-metric-like space is usually not unique (see [7]).

Lemma 2.4 ([1]). Let (X, A) be a b-metric-like space with coefficient κ , and let $\{x_n\}$ be sequence in X such that

$$A(x_n, x_{n+1}) \le \lambda A(x_{n-1}, x_n)$$

for some λ , $0 < \lambda < \frac{1}{\kappa}$, and each $n \in \mathbb{N}$. Then $\lim_{m,n\to\infty} A(x_m, x_n) = 0$.

Let Φ be a family of functions $\phi: [0,\infty) \to [0,\infty)$ satisfying the following conditions:

- (i) ϕ is continuous and nondecreasing;
- (ii) $\phi(t) = 0$ if and only if t = 0;
- (iii) $\phi(0) = 0 < \phi(t)$ for all t > 0.

We denote by Ψ the set of functions $\psi: [0, +\infty) \to [0, +\infty)$ satisfying

- (a) ψ is lower semi continuous;
- (b) $\psi(t) > 0$ for all t > 0 and $\psi(0) = 0$.

3. Main Results

Theorem 3.1. Let (X, \leq) be a partially ordered set. Suppose there exists a function A such that (X, A) is a complete b-metric-like space with the constant $\kappa \geq 1$. Let $f: X \to X$ be a nondecreasing mapping which satisfies the inequality

$$\phi\left(\kappa^{2}A\left(fx,fy\right)\right) \le \phi\left(M\left(x,y\right)\right) - \psi\left(M\left(x,y\right)\right) + L\phi\left(N^{p}\left(x,y\right)\right)$$
(3.1)

for all distinct points $x, y \in X$ with $y \leq x$, where $\phi \in \Phi, \psi \in \Psi, L \geq 0$ and

$$M(x,y) = \max\left\{\frac{A(x,fx)A(y,fy)}{A(x,y)}, A(x,y)\right\},\$$
$$N^{p}(x,y) = \min\left\{A^{p}(x,fx), A^{p}(y,fy), A^{p}(x,fy), A^{p}(y,fx)\right\}.$$

Also, assume either

- (i) f is continuous or;
- (ii) if $\{x_n\}$ is a nondecreasing sequence in X such that $x_n \to \omega$, then $\omega = \sup \{x_n\}$.

If there exists $x_0 \in X$ such that $x_0 \leq fx_0$, then f has a fixed point.

Proof. Let $x_0 \in X$ such that $x_0 \leq fx_0$. Define $x_n = fx_{n-1}$ for all $n \geq 1$. Using that f is a nondecreasing, we can construct inductively, starting with arbitrary $x_0 \in X$, a sequence $\{x_n\}$ such that $x_n \leq x_{n+1}$ for all $n \in \mathbb{N} \cup \{0\}$. If $x_{n_0} = x_{n_0+1}$ for some n_0 , then it is clear that x_{n_0} is a fixed point of f. Suppose that $x_n \neq x_{n+1}$ for all n. Therefore, by $x_n \leq x_{n+1}$ for all $n \in \mathbb{N} \cup \{0\}$, we have $x_n > x_{n-1}$ for all $n \geq 1$.

Owing to $x_n > x_{n-1}$ for all $n \ge 1$, from (3.1), we have

$$\begin{split} \phi\left(\kappa^{2}A\left(x_{n}, x_{n+1}\right)\right) &= \phi\left(\kappa^{2}A\left(fx_{n-1}, fx_{n}\right)\right) \\ &\leq \phi\left(\max\left\{\frac{A\left(x_{n-1}, fx_{n-1}\right)A\left(x_{n}, fx_{n}\right)}{A\left(x_{n-1}, x_{n}\right)}, A\left(x_{n-1}, x_{n}\right)\right\}\right) \\ &\quad -\psi\left(\max\left\{\frac{A\left(x_{n-1}, fx_{n-1}\right)A\left(x_{n}, fx_{n}\right)}{A\left(x_{n-1}, x_{n}\right)}, A\left(x_{n-1}, x_{n}\right)\right\}\right) \\ &\quad + L\phi\left(\min\left\{A^{p}\left(x_{n-1}, fx_{n-1}\right), A^{p}\left(x_{n}, fx_{n}\right), A^{p}\left(x_{n-1}, fx_{n}\right), A^{p}\left(x_{n}, fx_{n}\right)\right)\right. \\ &\quad = \phi\left(\max\left\{A\left(x_{n}, x_{n+1}\right), A\left(x_{n-1}, x_{n}\right)\right\}\right) \\ &\quad -\psi\left(\max\left\{A\left(x_{n}, x_{n+1}\right), A\left(x_{n-1}, x_{n}\right)\right\}\right) \\ &\quad + L\phi\left(\min\left\{A^{p}\left(x_{n-1}, fx_{n-1}\right), A^{p}\left(x_{n}, fx_{n}\right), A^{p}\left(x_{n}, fx_{n}\right), A^{p}\left(x_{n-1}, fx_{n}\right), A^{p}\left(x_{n}, fx_{n}\right)\right) \\ &\quad = \phi\left(\max\left\{A\left(x_{n}, x_{n+1}\right), A\left(x_{n-1}, x_{n}\right)\right\}\right) \\ &\quad = \phi\left(\max\left\{A\left(x_{n}, x_{n+1}\right), A\left(x_{n-1}, x_{n}\right)\right\}\right) \\ &\quad -\psi\left(\max\left\{A\left(x_{n}, x_{n+1}\right), A\left(x_{n-1}, x_{n}\right)\right\}\right) \\ &\quad -\psi\left(\max\left\{A\left(x_{n}, x_{n+1}\right), A\left(x_{n-1}, x_{n}\right)\right\}\right). \end{split}$$

If $A(x_{n-1}, x_n) < A(x_n, x_{n+1})$ for some $n \ge 1$, then from (3.2) we get that

$$\phi\left(\kappa^{2}A\left(x_{n}, x_{n+1}\right)\right) \leq \phi\left(A\left(x_{n}, x_{n+1}\right)\right) - \psi\left(A\left(x_{n}, x_{n+1}\right)\right),$$
(3.3)

or equivalently,

$$\kappa^{2}A(x_{n}, x_{n+1}) < A(x_{n}, x_{n+1})$$

This is a contradiction. Thus from (3.2) it follows that

$$\phi\left(\kappa^{2}A\left(x_{n}, x_{n+1}\right)\right) \le \phi\left(A\left(x_{n-1}, x_{n}\right)\right) - \psi\left(A\left(x_{n-1}, x_{n}\right)\right) < \phi\left(A\left(x_{n-1}, x_{n}\right)\right)$$
(3.4)

or

$$\kappa^{2} A\left(x_{n}, x_{n+1}\right) < A\left(x_{n-1}, x_{n}\right),$$

$$A\left(x_{n}, x_{n+1}\right) < \lambda A\left(x_{n-1}, x_{n}\right), \quad \text{where } \lambda = \frac{1}{\kappa^{2}} < \frac{1}{\kappa}.$$

Then by Lemma 2.4 we have $\lim_{m,n\to\infty} A(x_m, x_n) = 0$. Due to Definition 2.3 part (b), $\{x_n\}$ is a Cauchy sequence. Since (X, A) is a complete *b*-metric-like space, $\{x_n\}$ in X converges to $\omega \in X$ so that

$$\lim_{n,m\to\infty} A(x_n, x_m) = \lim_{n\to\infty} A(x_n, \omega) = A(\omega, \omega) = 0.$$
(3.5)

Now, suppose that the assumption (i) holds. The continuity of f implies

$$\omega = \lim_{n \to \infty} x_n = \lim_{n \to \infty} f x_{n-1} = f\left(\lim_{n \to \infty} x_{n-1}\right) = f\omega$$

and this proved that ω is a fixed point of f. Eventually, suppose that the assumption (ii) holds. Since $\{x_n\}$ is a nondecreasing sequence and $x_n \to \omega$, then $\omega = \sup\{x_n\}$. Thus, $x_n \leq \omega$ for all n. Since f is nondecreasing, $fx_n \leq f\omega$ for all n, that is to say, $x_{n+1} \leq f\omega$ for all n. Further, as $x_n \leq x_{n+1} \leq f\omega$ for all n and $\omega = \sup\{x_n\}$, we get $\omega \leq f\omega$. For this purpose, we establish the sequence $\{y_n\}$ as follows:

$$y_0 = \omega, \quad y_n = f y_{n-1}, \quad n \ge 1$$

Due to $\omega \leq f \omega$, we obtain that $y_0 \leq f y_0 = y_1$. Therefore, $\{y_n\}$ is a nondecreasing sequence and $\lim_{n\to\infty} y_n = u$ for certain $u \in X$. By the assumption (ii), we get $u = \sup\{y_n\}$.

Due to $x_n < \omega = y_0 \le f\omega = fy_0 \le y_n \le u$ for all n, suppose that $\omega \ne u$, from (3.1), we have

$$\begin{split} \phi\left(\kappa^{2}A\left(x_{n+1}, y_{n+1}\right)\right) &= \phi\left(\kappa^{2}A\left(fx_{n}, fy_{n}\right)\right) \\ &\leq \phi\left(\max\left\{\frac{A\left(x_{n}, fx_{n}\right)A\left(y_{n}, fy_{n}\right)}{A\left(x_{n}, y_{n}\right)}, A\left(x_{n}, y_{n}\right)\right\}\right) \\ &- \psi\left(\max\left\{\frac{A\left(x_{n}, fx_{n}\right)A\left(y_{n}, fy_{n}\right)}{A\left(x_{n}, y_{n}\right)}, A\left(x_{n}, y_{n}\right)\right\}\right) \\ &+ L\phi\left(\min\left\{A^{p}\left(x_{n}, fy_{n}\right), A^{p}\left(y_{n}, fx_{n}\right), A^{p}\left(x_{n}, fx_{n}\right), A^{p}\left(y_{n}, fy_{n}\right)\right\}\right) \\ &= \phi\left(\max\left\{\frac{A\left(x_{n}, x_{n+1}\right)A\left(y_{n}, y_{n+1}\right)}{A\left(x_{n}, y_{n}\right)}, A\left(x_{n}, y_{n}\right)\right\}\right) \\ &- \psi\left(\max\left\{\frac{A\left(x_{n}, x_{n+1}\right)A\left(y_{n}, y_{n+1}\right)}{A\left(x_{n}, y_{n}\right)}, A\left(x_{n}, y_{n}\right)\right\}\right) \\ &+ L\phi\left(\min\left\{A^{p}\left(x_{n}, y_{n+1}\right), A^{p}\left(y_{n}, x_{n+1}\right), A^{p}\left(y_{n}, x_{n+1}\right), A^{p}\left(y_{n}, x_{n+1}\right)\right\}\right). \end{split}$$

Taking the upper limit as $n \to \infty$ in (3.5), we have

$$\phi\left(\kappa^{2}A\left(\omega,u\right)\right) \leq \phi\left(\max\left\{0,A\left(\omega,u\right)\right\}\right) - \psi\left(\max\left\{0,A\left(\omega,u\right)\right\}\right) + L\phi\left(0\right) < \phi\left(A\left(\omega,u\right)\right),$$

which is a contradiction. Hence, $\omega = u$. We have $u \leq fu \leq u$, consequently, fu = u. For this reason, x is a fixed point of f.

If we take L = 0 in Theorem 3.1, we have the following result.

Theorem 3.2. Let (X, \leq) be a partially ordered set. Suppose there exists a function A such that (X, A) is a complete b-metric-like space with the constant $\kappa \geq 1$. Let $f : X \to X$ be a nondecreasing mapping which satisfies the inequality

$$\phi\left(\kappa^{2}A\left(fx,fy\right)\right) \le \phi\left(M\left(x,y\right)\right) - \psi\left(M\left(x,y\right)\right) \tag{3.6}$$

for all distinct points $x, y \in X$ with $y \leq x$ where $\phi \in \Phi, \psi \in \Psi$ and

$$M(x,y) = \max\left\{\frac{A(x,fx)A(y,fy)}{A(x,y)}, A(x,y)\right\}.$$

Also, assume either

(i) f is continuous or;

(ii) if $\{x_n\}$ is a nondecreasing sequence in X such that $x_n \to \omega$, then $\omega = \sup\{x_n\}$.

If there exists $x_0 \in X$ such that $x_0 \leq fx_0$, then f has a fixed point.

Proof. We omit the proof due to the analogy to Theorem 3.1.

If we take $\phi(t) = t$ and $\psi(t) = (1 - k) t$ in Theorem 3.1, we have the following result.

Theorem 3.3. Let (X, \leq) be a partially ordered set. Suppose there exists a function A such that (X, A) is a complete b-metric-like space with the constant $\kappa \geq 1$. Let $f: X \to X$ be a nondecreasing mapping which satisfies the inequality

$$\kappa^{2}A\left(fx, fy\right) \le kM\left(x, y\right) + LN^{p}\left(x, y\right)$$
(3.7)

for all distinct points $x, y \in X$ with $y \leq x$ where $k \in (0, 1), L \geq 0$ and

$$M(x,y) = \max\left\{\frac{A(x,fx)A(y,fy)}{A(x,y)}, A(x,y)\right\},\$$
$$N^{p}(x,y) = \min\left\{A^{p}(x,fx), A^{p}(y,fy), A^{p}(x,fy), A^{p}(y,fx)\right\}.$$

Also, assume either

(i) f is continuous or;

(ii) if $\{x_n\}$ is a nondecreasing sequence in X such that $x_n \to \omega$, then $\omega = \sup\{x_n\}$.

If there exists $x_0 \in X$ such that $x_0 \leq fx_0$, then f has a fixed point.

Proof. Along the lines of the proof of Theorem 3.1, we obtain the desired results. Due to the analogy, we skip the details of the proof. \Box

Theorem 3.4. In addition to the hypotheses of Theorem 3.1, assume that

for every $\omega, u \in X$ there exists $v \in X$ that is comparable to ω and u,

then f has a unique fixed point.

Proof. Suppose to the contrary that ω and u are fixed points of f where $\omega \neq u$. From (3.4), there exists $v \in X$ which is comparable with ω and u. Define the sequence $v_{n+1} = fv_n$ for all $n \in \mathbb{N} \cup \{0\}$. Since v is comparable with ω , we obtain $v \leq \omega$. By induction, we have $v_n \leq \omega$.

If $v_{n_0} = \omega$ for some $n_0 \ge 1$, then $v_n = fv_{n-1} = f\omega = \omega$ for all $n \ge n_0 - 1$, that is, $v_n \to \omega$ as $n \to \infty$.

On the other hand, if $v_n \neq \omega$ for all n, from (3.1), we observe that

$$\phi\left(\kappa^{2}A\left(\omega,v_{n}\right)\right) = \phi\left(\kappa^{2}A\left(f\omega,fv_{n-1}\right)\right)$$

$$\leq \phi\left(M\left(\omega,v_{n-1}\right)\right) - \psi\left(M\left(\omega,v_{n-1}\right)\right)$$

$$+ L\phi\left(\min\left\{A^{p}\left(\omega,f\omega\right), A^{p}\left(v_{n-1},fv_{n-1}\right)\right\}\right)$$

$$A^{p}\left(\omega,fv_{n-1}\right), A^{p}\left(v_{n-1},f\omega\right)\right\}$$

$$= \phi\left(M\left(\omega,v_{n-1}\right)\right) - \psi\left(M\left(\omega,v_{n-1}\right)\right)$$

for all distinct points $\omega, u \in X$ with $u \leq \omega$ where $\phi \in \Phi, \psi \in \Psi$ and

$$M(\omega, v_{n-1}) = \max\left\{\frac{A(\omega, f\omega) A(v_{n-1}, fv_{n-1})}{A(\omega, v_{n-1})}, A(\omega, v_{n-1})\right\}$$
$$= \max\left\{\frac{A(\omega, \omega) A(v_{n-1}, v_n)}{A(\omega, v_{n-1})}, A(\omega, v_{n-1})\right\}.$$

We assume that $A(\omega, \omega) = 0$ in the above inequality. Then, we have

$$M(\omega, v_{n-1}) = A(\omega, v_{n-1}).$$
(3.8)

Thus,

$$\phi\left(\kappa^{2}A\left(\omega,v_{n}\right)\right) \leq \phi\left(A\left(\omega,v_{n-1}\right)\right) - \psi\left(A\left(\omega,v_{n-1}\right)\right),$$

which is a contradiction. This completes the proof.

4. Consequences of the Main Results

We know that *b*-metric-like spaces are a proper extension of partial metric space, metric-like and *b*-metric spaces. Therefore, we can deduce the following corollaries in the settings of metric-like, partial metric and *b*-metric spaces, respectively.

4.1. Fixed Point Results in Metric-Like Spaces.

The notion of metric-like spaces which is an interesting generalization of partial metric space was introduced by Amini-Harandi (see [[2]-Definition 2.1]).

Corollary 4.1. Let (X, \leq) be a partially ordered set. Suppose there exists a function ξ such that (X,ξ) is a complete metric-like space. Let $f: X \to X$ be a nondecreasing mapping which satisfies the inequality

$$\phi\left(\xi\left(fx,fy\right)\right) \le \phi\left(M^{*}\left(x,y\right)\right) - \psi\left(M^{*}\left(x,y\right)\right) + L\phi\left(N^{*}\left(x,y\right)\right)$$

for all distinct points $x, y \in X$ with $y \leq x$ where $\phi \in \Phi, \psi \in \Psi, L \geq 0$ and

$$M^{*}(x,y) = \max\left\{\frac{\xi(x,fx)\xi(y,fy)}{\xi(x,y)}, \ \xi(x,y)\right\},\$$
$$N^{*}(x,y) = \min\left\{\xi(x,fx), \ \xi(y,fy), \ \xi(x,fy), \ \xi(y,fx)\right\}$$

Also, assume either

- (i) f is continuous or;
- (ii) if $\{x_n\}$ is a nondecreasing sequence in X such that $x_n \to \omega$, then $\omega = \sup\{x_n\}$.

If there exists $x_0 \in X$ such that $x_0 \leq fx_0$, then f has a fixed point.

Corollary 4.2. In addition to the hypotheses of Corollary 4.1, assume that

for every $\omega, u \in X$ there exists $v \in X$ that is comparable to ω and u,

then f has a unique fixed point.

4.2. Fixed Point Results in Partial Metric Spaces.

Matthews [9] established the notation of a partial metric space (see [6, Definition 3.1]).

Corollary 4.3. Let (X, \leq) be a partially ordered set. Suppose there exists a metric D such that (X, D) is a complete partial metric space and let $f : X \to X$ be a nondecreasing mapping which satisfies the inequality

$$\phi(D(fx, fy)) \le \phi(M^{**}(x, y)) - \psi(M^{**}(x, y)) + L\phi(N^{**}(x, y))$$

for all distinct points $x, y \in X$ with $y \leq x$ where $\phi \in \Phi, \psi \in \Psi, L \geq 0$ and

$$M^{**}(x,y) = \max\left\{\frac{D(x,fx) D(y,fy)}{D(x,y)}, D(x,y)\right\},\$$
$$N^{**}(x,y) = \min\left\{D(x,fx), D(y,fy), D(x,fy), D(y,fx)\right\}.$$

Also, assume either

- (i) f is continuous or;
- (ii) if $\{x_n\}$ is a nondecreasing sequence in X such that $x_n \to \omega$, then $\omega = \sup\{x_n\}$.

If there exists $x_0 \in X$ such that $x_0 \leq fx_0$, then f has a fixed point.

Corollary 4.4. In addition to the hypotheses of Corollary 4.3, assume that

for every $\omega, u \in X$ there exists $v \in X$ that is comparable to ω and u,

then f has a unique fixed point.

4.3. Fixed Point Results in b-Metric Spaces.

The concept of b-metric space was introduced by Czerwik (for more details and definition, see [4]).

Corollary 4.5. Let (X, \leq) be a partially ordered set. Suppose there exists a function b such that (X, b) is a complete b-metric space with the constant $s \geq 1$ and let $f : X \to X$ be a nondecreasing mapping which satisfies the inequality

$$\phi\left(\kappa b\left(fx, fy\right)\right) \le \phi\left(m\left(x, y\right)\right) - \psi\left(m\left(x, y\right)\right) + L\phi\left(n\left(x, y\right)\right)$$

for all distinct points $x, y \in X$ with $y \leq x$ where $\phi \in \Phi, \psi \in \Psi, L \geq 0$ and

$$m(x, y) = \max\left\{\frac{b(x, fx) b(y, fy)}{b(x, y)}, b(x, y)\right\},\n(x, y) = \min\left\{b(x, fx), b(y, fy), b(x, fy), b(y, fx)\right\}$$

Also, assume either

- (i) f is continuous or;
- (ii) if $\{x_n\}$ is a nondecreasing sequence in X such that $x_n \to \omega$, then $\omega = \sup\{x_n\}$.

If there exists $x_0 \in X$ such that $x_0 \leq fx_0$, then f has a fixed point.

Corollary 4.6. In addition to the hypotheses of Corollary 4.5, assume that

for every $\omega, u \in X$ there exists $v \in X$ that is comparable to ω and u,

then f has a unique fixed point.

Remark 4.7.

- 1. Theorem 3.2 is a generalization of Theorem 4 in [10].
- 2. If we take L = 0, $\phi(t) = t$, $\psi(t) = (1 k)t$ and $k = \alpha + \beta$ where $\alpha, \beta \in [0, 1)$ and $t \in [o, \infty)$ in Theorem 3.1, this a generalization of Corollary 7 in [10].
- 3. If we take L = 0 and $\phi(t) = t$ in Theorem 3.1, this a generalization of Theorem 2.1. in [8].
- 4. If we take L = 0, $\phi(t) = t$, $\psi(t) = (1 k)t$ and $k = \alpha + \beta$ where $\alpha, \beta \in [0, 1)$ and $t \in [o, \infty)$ in Corollary 4.3, this corresponds to Theorem 2.2 and Theorem 2.3 in [6].

5. Examples

We present the following two examples to support our results.

Example 5.1. Let $X = [0, \infty)$. Define $A : X \times X \to \mathbb{R}^+$ by $A(x, y) = x^2 + y^2 + |x - y|^2$ for all $x, y \in X$. Define an ordering " \preceq " on X as follows:

$$x \preceq y \Leftrightarrow x \leq y, \quad \forall x, y \in X.$$

 (X, \preccurlyeq) is a partially ordered set and (X, A) is a complete b-metric-like space with coefficient $\kappa = 2$ (see [7], Example 14).

Define self-map
$$f$$
 on X by $fx = \ln\left(\sqrt{\left(\frac{x}{3}\right)^2 + 1 + \frac{x}{3}}\right) = \sinh^{-1}\frac{x}{3}$. By (3.8), we have

$$2^2 A (fx, fy) = 4 \left(f^2 x + f^2 y + |fx - fy|^2\right)$$

$$= 4 \left(\left(\sinh^{-1}\frac{x}{3}\right)^2 + \left(\sinh^{-1}\frac{y}{3}\right)^2\right)$$

$$+ \left|\sinh^{-1}\frac{x}{3} - \sinh^{-1}\frac{y}{3}\right|^2\right)$$

$$\leq 4 \left(\left(\frac{x}{3}\right)^2 + \left(\frac{y}{3}\right)^2 + \left|\frac{x}{3} - \frac{y}{3}\right|^2\right)$$

$$\leq \frac{4}{9} \left(x^2 + y^2 + |x - y|^2\right)$$

$$= \frac{4}{9} A (x, y)$$

$$\leq \frac{4}{9} \max\left\{\frac{A (x, fx) A (y, fy)}{A (x, y)}, A (x, y)\right\}$$

$$+ L \left\{\min\left\{A^p (x, fx), A^p (y, fy), A^p (x, fy), A^p (y, fx)\right\}\right\}$$

$$= kM (x, y) + LN^p (x, y),$$

which implies that $\kappa^2 A(fx, fy) \leq kM(x, y) + LN^p(x, y)$ where $k = \frac{4}{9} \in (0, 1)$. Now, all the conditions of Theorem 3.3 hold and f has a unique fixed point $0 \in X = [0, \infty)$.

Example 5.2. Let $X = \{0, 1, 2\}$ and $A: X \times X \to \mathbb{R}^+$ be defined by

$$A(x, x) = 0$$
 for $x \in X$,
 $A(0, 1) = A(1, 2) = 1$,
 $A(0, 2) = \frac{9}{4}$,
 $A(x, y) = A(y, x)$ for $x, y \in X$.

Then, (X, A) is a *b*-metric-like space (with $\kappa = \frac{9}{8}$). Define an order on X by

$$\preccurlyeq := \{ (0,0), (1,1), (2,2), (2,0) \}$$

and obtain a complete ordered *b*-metric-like space. Consider the mapping

$$f = \left(\begin{array}{rrr} 0 & 1 & 2 \\ 0 & 2 & 0 \end{array}\right).$$

Define the mappings ϕ , $\psi : [0, \infty) \to [0, \infty)$ by $\phi(t) = t$ and $\psi(t) = \frac{t}{2}$.

We know that if $\{x_n\}$ is a nondecreasing sequence in X such that $x_n \to \omega$, then $\omega = \sup\{x_n\}$. Virtually, let $\{v_n\}$ be a nondecreasing sequence in X in terms of \preccurlyeq such that $v_n \to u \in X$ as $n \to \infty$. We get $v_n \preccurlyeq v_{n+1}$ for all $n \in \mathbb{N}$.

- (i) If $v_0 = 0$, then $v_0 = 0 \preccurlyeq v_1$. From the definition of \preccurlyeq , we have $v_1 = 0$. By induction, we have $v_n = 0$ for all $n \in \mathbb{N}$ and u = 0. Then $v_n \preccurlyeq u$ for all $n \in \mathbb{N}$ and $u = \sup \{v_n\}$.
- (ii) If $v_0 = 1$, then $v_0 = 1 \preccurlyeq v_1$. From the definition of \preccurlyeq , we have $v_1 = 1$. By induction, we have $v_n = 1$ for all $n \in \mathbb{N}$ and u = 1. Then $v_n \preccurlyeq u$ for all $n \in \mathbb{N}$ and $u = \sup\{v_n\}$.
- (iii) If $v_0 = 2$, then $v_0 = 2 \preccurlyeq v_1$. From the definition of \preccurlyeq , we have $v_1 \in \{2, 0\}$. By induction, we have $v_n \in \{2, 0\}$ for all $n \in \mathbb{N}$. Suppose that there exists $q \ge 1$ such that $v_q = 0$. From the definition of \preccurlyeq , we have $v_n = v_q = 0$ for all $n \ge q$. Therefore, we get u = 0. and $v_n \preccurlyeq u$ for all $n \in \mathbb{N}$. Now, suppose that $v_n = 2$ for all $n \in \mathbb{N}$. In the circumstances, we have u = 2 and $v_n \preccurlyeq u$ for all $n \in \mathbb{N}$ and $u = \sup\{v_n\}$.
- Now, we proved that in all situations, we have $u = \sup \{v_n\}$. Let $x, y \in X$ such that $x \preccurlyeq y$ and $x \neq y$, then, we get only x = 2 and y = 0. Especially,

$$A(f2, f0) = A(0, 0) = 0$$

and

$$M(2,0) = \max\left\{\frac{A(2,f2) A(0,f0)}{A(2,0)}, A(2,0)\right\}$$
$$= \max\left\{\frac{A(2,0) A(0,0)}{A(2,0)}, A(2,0)\right\}$$
$$= A(2,0) = \frac{9}{4}.$$

Thus (3.7) holds. After all, it is clear that f is a nondecreasing mapping in terms of \preccurlyeq and there exists $x_0 = 2$ such that $x_0 \preccurlyeq fx_0$. All the conditions of Theorem 3.2 are confirmed in terms of \preccurlyeq and u = 0 is a fixed point of f.

References

- M. A. Alghamdi, N. Hussain, P. Salimi, Fixed point and coupled fixed point theorems on b-metric-like spaces, J. Inequal. Appl., 2013 (2013), 25 pages. 2.1, 2.2, 2.3, 2.4
- [2] A. Amini-Harandi, Metric-like spaces, partial metric spaces and fixed points, Fixed Point Theory Appl., 2012 (2012), 10 pages. 4.1
- [3] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux equations integerales, Fund. Math., 3 (1922), 133–181.1
- [4] S. Czerwik, Contraction mappings in b-metric space, Acta Math. Inform. Univ. Ostraviensis, 1 (1993), 5–11.4.3
- [5] D. J. Jaggi, Some unique fixed point theorems, Indian J. Pure Appl. Math., 8 (1977), 223–230.1
- [6] J. Harjani, B. López, K. Sadarangani, A fixed point theorem for mappings satisfying a contractive condition of rational type on a partially ordered metric space, Abstr. Appl. Anal., 2010 (2010), 8 pages. 1, 4.2, 4.7
- [7] N. Hussain, J. R. Roshan, V. Parvaneh, Z. Kadelburg, Fixed points of contractive mappings in b-metriclike spaces, Sci. World J., 2014 (2014), 15 pages 2, 5.1
- [8] N. V. Luong, N. X. Thuan, Fixed point theorem for generalized weak contractions satisfying rational expression in ordered metric space, Fixed Point Theory Appl., 2011 (2011), 10 pages. 1, 4.7

- [9] S. G. Matthews, Partial metric topology, Ann. New York Acad. Sci., New York, 728 (1994), 183–197.
 4.2
- [10] Z. Mustafa, E. Karapınar, H. Aydi, A discussion on generalized almost contractions via rational expressions in partially ordered metric spaces, J. Inequal. Appl., 2014 (2014), 12 pages 1, 1.1, 4.7