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Abstract

In this paper, we introduce an interesting extension of the S-metric spaces called Sb-metric spaces,
in which we show the existence of fixed point for a self mapping defined on such spaces. We also
prove some results on the topology of the Sb-metric spaces. c©2016 All rights reserved.
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1. Introduction

The concept of metric spaces has been generalized in many ways. Bakhtin [2] introduced the
b-metric space, in which many researchers treated the fixed point theory. Czerwick [5] extended the
Banach principle contraction and its generalizations under different contractions [1, 4, 6, 7, 10, 15,
16, 17, 18] and [19].

Several authors have investigated the S-metric space and generalized many results related to the
existence of fixed point, see [8, 9, 11, 12, 14] and [20]. However, no work has extended the fixed point
problem from the b-metric spaces to the S-metric spaces.

Inspired by the work of Bakhtin in [2], we first introduce the Sb-metric space as a generalization
of the b-metric space, and then we prove some fixed point results under different types of contractions
in a complete Sb-metric space.

Recall the definitions of the b-metric space and the S-metric space.

Definition 1.1 ([2]). Let X be a nonempty set. A b-metric on X is a function d : X2 → [0,∞) if
there exists a real number s ≥ 1 such that the following conditions hold for all x, y, z ∈ X :
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(i) d(x, y) = 0 if and only if x = y,

(ii) d(x, y) = d(y, x),

(iii) d(x, z) ≤ s[d(x, y) + d(y, z)].

The pair (X, d) is called a b-metric space.

Definition 1.2 ([13]). Let X be a nonempty set. An S-metric on X is a function S : X3 −→ [0,∞)
that satisfies the following conditions, for all x, y, z, t ∈ X :

(i) S(x, y, z) = 0 if and only if x = y = z,

(ii) S(x, y, z) ≤ S(x, x, t) + S(y, y, t) + S(z, z, t).

The pair (X,S) is called an S-metric space.

Now, we give the definition of the Sb-metric space.

Definition 1.3. Let X be a nonempty set and let s ≥ 1 be a given real number. A function
Sb : X3 → [0,∞) is said to be Sb-metric if and only if for all x, y, z, t ∈ X : the following conditions
hold:

(i) Sb(x, y, z) = 0 if and only if x = y = z,

(ii) Sb(x, x, y) = Sb(y, y, x) for all x, y ∈ X,

(iii) Sb(x, y, z) ≤ s[Sb(x, x, t) + Sb(y, y, t) + Sb(z, z, t)].

The pair (X,Sb) is called a Sb-metric space.

Remark 1.4. Note that the class of Sb-metric spaces is larger than the class of S-metric spaces.
Indeed, every S-metric space is an Sb-metric space with s = 1. However, the converse is not always
true.

Example 1.5. Let X be a nonempty set and card(X) ≥ 5. Suppose X = X1 ∪X2 a partition of X
such that card(X1) ≥ 4. Let s ≥ 1. Then

Sb(x, y, z) =


0 if x = y = z = 0

3s if (x, y, z) ∈ X3
1

1 if (x, y, z) /∈ X3
1

for all x, y, z ∈ X Sb is a Sb-metric on X with coefficient s ≥ 1.

Proof.

i) If x = y = z then Sb(x, y, z) = 0. Thus the first assertion of the definition of the Sb-metric
space is satisfied.

ii) Let’s prove the triangle inequality: Sb(x, y, z) ≤ s[Sb(x, x, t) + Sb(y, y, t) + Sb(z, z, t)] (∗).

• Case 1: If (x, y, z) /∈ X3
1 . We have Sb(x, y, z) = 1 Sb(x, x, t) ≥ 1, Sb(y, y, t) ≥ 1, and

Sb(z, z, t) ≥ 1, for all t ∈ X. Thus (∗) is holds (1 ≤ 3s).
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• Case 2: If (x, y, z) ∈ X3
1 . We distinguish two sub-cases:

◦ if t ∈ X1, (∗) is satisfied since Sb(x, y, z) = Sb(x, x, t) = Sb(y, y, t) = Sb(z, z, t) = 3s.

◦ if t /∈ X1, we have Sb(x, x, t) = Sb(y, y, t) = Sb(z, z, t) = 1 and Sb(x, y, z) = 3s. Then,
(∗) holds.

Definition 1.6. Let (X,Sb) be an Sb-metric space and {xn} be a sequence in X. Then

(i) A sequence {xn} is called convergent if and only if there exists z ∈ X such that Sb(xn, xn, z) −→
0 as n −→∞. In this case we write lim

n−→∞
xn = z.

(ii) A sequence {xn} is called a Cauchy sequence if and only if Sb(xn, xn, xm) −→ 0 as n,m −→∞.

(iii) (X,Sb) is said to be a complete Sb-metric space if every Cauchy sequence {xn} converges to a
point x ∈ X such that

lim
n,m→∞

Sb(xn, xn, xm) = lim
n,m→∞

Sb(xn, xn, x) = Sb(x, x, x).

(iv) Define the diameter of a subset Y of X by

diam(Y ) := Sup{Sb(x, y, z) | x, y, z ∈ Y }.

Definition 1.7 ([3]).

(i) Let E be a nonempty set and T : E −→ E a selfmap. We say that x ∈ E is a fixed point of T
if T (x) = x.

(ii) Let E be any set and T : E −→ E a selfmap. For any given x ∈ E, we define T n(x) inductively
by T 0(x) = x and T n+1(x) = T (T n(x)); we recall T n(x) the nth iterative of x under T . For
any x0 ∈ X, the sequence {xn}n≥0 ⊂ X given by

xn = Txn−1 = T nx0, n = 1, 2, ... (1.1)

is called the sequence of successive approximations with the initial value x0. It is also known
as the Picard iteration starting at x0.

2. Main result

Theorem 2.1. Let (X,Sb) be a complete Sb-metric space and T be a continuous self mapping on X
satisfy

Sb(Tx, Ty, Tz) ≤ ψ[Sb(x, y, z)] for all x, y, z ∈ X, (2.1)

where ψ : [0,+∞) −→ [0,+∞) is an increasing function such that

lim
n→∞

ψn(t) = 0 for each fixed t > 0.

Then T has a unique fixed point in X.
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Proof. Let x ∈ X and ε > 0. Let n be a natural number such that ψn(ε) <
ε

2s
. Let F = T n and

xk = F k(x) for k ∈ N. Then for x, y ∈ X and α = ψn we have

Sb(Fx, Fx, Fy) ≤ ψn(Sb(x, x, y))

= α(Sb(x, x, y)).

Hence, for k ∈ N Sb(xk+1, xk+1, xk) −→ 0 as k −→∞. Therefore, let k be such that

Sb(xk+1, xk+1, xk) <
ε

2s
.

Let’s define the ball B(xk, ε) such that for every z ∈ B(xk, ε) := {y ∈ X|Sb(xk, xk, y) ≤ ε}. Note
that xk ∈ B(xk, ε), therefore B(xk, ε) 6= ∅. Hence, for all z ∈ B(xk, ε) we have

Sb(Fz, Fz, Fxk) ≤ α(Sb(xk, xk, z))

≤ α(ε) = ψn(ε) <
ε

2s
<
ε

s
.

(2.2)

Since Sb(Fxk, Fxk, Fxk) = Sb(xk+1, xk+1, xk) <
ε

2s
. Thus,

Sb(xk, xk, Fz) ≤ s[Sb(xk, xk, xk+1) + Sb(xk, xk, xk+1) + Sb(Fz, Fz, xk+1)]

= s[2Sb(xk, xk, xk+1) + Sb(Fz, Fz, xk+1)]

≤ s[2
ε

2s
+
ε

s
] = ε.

Hence, F maps B(xk, ε) to it self. Since xk ∈ B(xk, ε), we have Fxk ∈ B(xk, ε). By repeating this
process we get

Fm
xk
∈ B(xk, ε) for all m ∈ N.

That is xl ∈ B(xk, ε) for all l ≥ k. Hence

Sb(xm, xm, xl) < ε for all m, l > k.

Therefore {xk} is a Cauchy sequence and by the completeness of X, there exists u ∈ X such that
xk −→ u as k −→∞. Moreover, u = lim

k→∞
xk+1 = lim

k→∞
xk = F (u). Thus, F has u as a fixed point.

we prove now the uniqueness of the fixed point for F . Since α(t) = ψn(t) < t for any t > 0, let u
and u1 be two fixed points of F .

Sb(u, u, u1) = Sb(Fu, Fu, Fu1)

≤ ψn(u, u, u1)

= α(Sb(u, u, u1))

≤ Sb(u, u, u1),

=⇒ Sb(u, u, u1) = 0 =⇒ u = u1 and hence, F has a unique fixed point in X.
On the other hand, T nk+r(x) = F k(T r(x)) −→ u as k −→ ∞. Hence, Tmx −→ u as m −→ ∞

for every x. That is u = lim
m→∞

Txm = T (u). Thereby, T has a fixed point.

The following results extend the results of [4] to the Sb-metric space.
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Lemma 2.2. Let (X,Sb) be a complete Sb-metric space. Then, for every descending sequence {Fn}n≥1
of nonempty closed subsets of X such that diam(Fn) −→ 0 as n −→ ∞. Therefore, the intersection
∩∞n=1Fn contains one and only one point.

Proof. Let xn be any point in Fn. Because of the decrease of the sequence {Fn}n≥1, we have
xn, xn+1, xn+2, ... ∈ Fn.

Given ε > 0, there exists n0 ∈ N such that diam(Fn0) < ε. We obtain xn0 , xn0+1, xn0+2, ... ∈ Fn0 .
For m,n ≥ n0, we have that

Sb(xn, xn, xm) ≤ diam(Fn0) < ε.

Hence, the sequence {xn}n≥1 is a Cauchy sequence in the complete Sb-metric space. Thus, it is
convergent. Let x ∈ X such that lim

n−→∞
xn = x. Now, for any given n we have that xn, xn+1, xn+2, ... ∈

Fn. Therefore, x = lim
n−→∞

xn ∈ F̄n = Fn since Fn is closed. Thus, x ∈ ∩∞n=1Fn.

We now prove the uniqueness of x. If y ∈ ∩∞n=1Fn and y 6= x, then Sb(x, x, y) = α > 0. There
exists n ∈ N large enough such that diam(Fn) < α = Sb(x, x, y) which implies that y 6= ∩∞n=1Fn,
which is a contradiction.

Definition 2.3. Let (X,Sb) be a Sb-metric space, f : X → R be a function.

• Let x0 ∈ X, f is a lower semi continuous at x0 if for every ε > 0 there exists a neighborhood
U of x0 such that f(x) > f(x0)− ε for all x ∈ U .

• f is said to be lower semi continuous if it is lower semi continuous at every point of X.

Theorem 2.4. Let (X,Sb) be a complete Sb-metric space (with s > 1), such that the Sb-metric is
continuous and let f : X → R be a a semi continuous function, proper and lower bounded mapping.
Then for every x0 ∈ X and ε > 0 with

f(x0) ≤ inf
x∈X

f(x) + ε,

there exists a sequence (xn)n∈N ⊂ X and xε ∈ X such that:

i) Sb(xn, xn, xε) ≤
ε

2n
, n ∈ N, (2.3)

ii) xn −→ xε as n −→∞, (2.4)

iii) f(x) +
∞∑
n=0

1

sn
Sb(xn, xn, x) > f(xε) +

∞∑
n=0

1

sn
Sb(xn, xn, xε), for every x 6= xε, (2.5)

iv) f(xε) +
∞∑
n=0

1

sn
Sb(xn, xn, xε) ≤ f(x0) ≤ inf

x∈X
f(x) + ε. (2.6)

Proof.
i) We consider the set

Tx0 = {x ∈ X|f(x) + Sb(x, x, x0) ≤ f(x0)}. (2.7)

As f is a lower semi continuous mapping and x0 ∈ Tx0, we obtain that Tx0 is nonempty and closed
in (X,Sb) and for every y ∈ Tx0

Sb(y, y, x0) ≤ f(x0)− f(y) ≤ f(x0)− inf
x∈X

f(x) ≤ ε. (2.8)
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We choose x1 ∈ Tx0 such that f(x1) + Sb(x1, x1, x0) ≤ inf
x∈Tx0

{f(x) + Sb(x, x, x0)}+
ε

2s
and let

Tx1 = {x ∈ Tx0|f(x) +
1∑
i=0

1

si
Sb(x, x, xi) ≤ f(x1) + Sb(x1, x1, x0)}. (2.9)

Inductively, we can suppose that xn−1 ∈ Txn−2 was already chosen and we consider

Txn−1 := {x ∈ Txn−2|f(x) +
n−1∑
i=0

1

si
Sb(x, x, xi) ≤ f(xn−1) +

n−2∑
i=0

1

si
Sb(xn−1, xn−1, xi)}. (2.10)

Let xn ∈ Txn−1 such that

f(xn) +
n−1∑
i=0

1

si
Sb(xn, xn, xi) ≤ inf

x∈Txn−1

[f(x) +
n−1∑
i=0

1

si
Sb(x, x, xi)] +

ε

2nsn
. (2.11)

Define now the set

Txn := {x ∈ Txn−1|f(x) +
n∑
i=0

1

si
Sb(x, x, xi) ≤ f(xn) +

n−1∑
i=0

1

si
Sb(xn, xn, xi)}. (2.12)

It is easy to see that the set Txn is nonempty and closed. Using the relations (2.11) and (2.12), we
obtain for every y ∈ Txn

f(y) +
n∑
i=0

1

si
Sb(y, y, xi) ≤ f(xn) +

n−1∑
i=0

1

si
Sb(xn, xn, xi),

which gives

1

sn
Sb(y, y, xn) ≤ [f(xn) +

n−1∑
i=0

1

si
Sb(xn, xn, xi)]− [f(y) +

n−1∑
i=0

1

si
Sb(y, y, xi)]

≤ [f(xn) +
n−1∑
i=0

1

si
Sb(xn, xn, xi)]− inf

x∈Txn−1

[f(x) +
n−1∑
i=0

1

si
Sb(x, x, xi)]

≤ ε

2nsn
.

Thus, for all y ∈ Txn we have

Sb(y, y, xn) ≤ ε

2n
. (2.13)

ii) From (2.13), we can deduce that Sb(y, y, xn)→ 0 as n→∞, so diam(Txn)→ 0. As (X,Sb) is a
complete Sb-metric space and from Lemma 2.2 we have ∩∞n=0Txn = {xε}. Using the equations (2.8)
and (2.13) we obtain that xε ∈ X satisfies (2.3). Therefore,

xn −→ xε as n −→∞.

.
iii) As xε is the single intersection of all the sets Txn, so for all x 6= xε, we have x /∈ ∩∞n=0Txn. Thus,
there exists m ∈ N such that

x ∈ Txm−1 and x /∈ Txm. (2.14)
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Using (2.12) and (2.14), we obtain

f(x) +
m∑
i=0

1

si
Sb(x, x, xi) > f(xm) +

m−1∑
i=0

1

si
Sb(xm, xm, xi). (2.15)

Thereby, (2.5) holds.
iv) Using (2.14) and the definition of the set Txn−1 given by (2.10), we obtain

f(x) +
m−1∑
i=0

1

si
Sb(xm, xm, xi) ≤ f(xm−1) +

m−2∑
i=0

1

si
Sb(xm−1, xm−1, xi). (2.16)

Similarly, by applying (2.16) to xm−1 we have that

f(xm−1) +
m−2∑
i=0

1

si
Sb(xm−1, xm−1, xi) ≤ f(xm−2) +

m−3∑
i=0

1

si
Sb(xm−2, xm−2, xi). (2.17)

By repeating this procedure enough times, we obtain

f(x0) ≥ f(xm) +
m−1∑
i=0

1

si
Sb(xm, xm, xi).

Moreover, for every q ≥ m, we have

f(x0) ≥ f(xm) +
m−1∑
i=0

1

si
Sb(xm, xm, xi) ≥ f(xq) +

q−1∑
i=0

1

si
Sb(xq, xq, xi) ≥ f(xε) +

q∑
i=0

1

si
Sb(xε, xε, xi).

Then, (2.6) holds.

Next, we state this immediate consequence.

Corollary 2.5. Let (X,Sb) be a complete Sb-metric space (with s > 1), such that the Sb-metric is
continuous and let f : X → R be a lower semi continuous, proper and lower bounded mapping. Then
for every ε > 0 there exists a sequence (xn)n∈N ⊂ X and x∗ ∈ X such that:

i) xn −→ xε, as n −→∞ xε ∈ X, (2.18)

ii) f(xε) +
∞∑
n=0

1

sn
Sb(xε, xε, xn) ≤ inf

x∈X
f(x) + ε, (2.19)

iii) f(x) +
∞∑
n=0

1

sn
Sb(x, x, xn) ≥ f(xε) +

∞∑
n=0

1

sn
Sb(xε, xε, xn) for any x ∈ X. (2.20)

Theorem 2.6. Let (X,Sb) be a complete Sb-metric space (with s > 1), such that the Sb-metric is
continuous and let T : X → X be an operator for which there exists a lower semi continuous mapping
f : X → R, such that:

i) Sb(u, u, v) + sSb(u, u, Tu) ≥ Sb(Tu, Tu, v), (2.21)

ii)
s2

s− 1
Sb(u, u, Tu) ≤ f(u)− f(Tu)), for any u, v ∈ X. (2.22)

Then T has at least one fixed point.



N. Souayah, N. Mlaiki, J. Math. Computer Sci. 16 (2016), 131–139 138

Proof. Assume that for all x ∈ X we have that Tx 6= x. Using Corollary 2.5 for f , we obtain that,
for each ε > 0 there exists a sequence (xn)n∈N ⊂ X such that xn −→ xε, as n −→∞, xε ∈ X and

f(x) +
∞∑
n=0

1

sn
Sb(x, x, xn) ≥ f(xε) +

∞∑
n=0

1

sn
Sb(xε, xε, xn) for any x ∈ X.

Since the above inequality holds for every x ∈ X, let put x := Txε and since Txε 6= xε, we get that

f(xε)− f(Txε) <
∞∑
n=0

1

sn
Sb(Txε, Txε, xn)−

∞∑
n=0

1

sn
Sb(xε, xε, xn). (2.23)

Let u = xε and v = xn in (2.21), we obtain

Sb(xε, xε, xn) + sSb(xε, xε, Txε) ≥ Sb(Txε, Txε, xn). (2.24)

From (2.23) and (2.24) we have

f(xε)− f(Txε) <
∞∑
n=0

s

sn
Sb(xε, Txε, Txε)

≤ sSb(xε, Txε, Txε)
∞∑
n=0

1

sn

≤ s2

s− 1
Sb(xε, Txε, Txε).

(2.25)

In (2.22) we choose u = xε. Then

s2

s− 1
Sb(xε, xε, Txε) ≤ f(xε)− f(Txε). (2.26)

From the inequalities (2.25) and (2.26) we get that

s2

s− 1
Sb(xε, xε, Txε) ≤ f(xε)− f(Txε) <

s2

s− 1
Sb(xε, xε, Txε),

which is a absurd. Therefore, there exists x∗ ∈ X such that x∗ ∈ Tx∗.
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