A fixed point theorem in S_{b}-metric spaces

Nizar Souayah ${ }^{\mathrm{a}, *}$, Nabil Mlaiki ${ }^{\text {b }}$
${ }^{\text {a D Department }}$ of Natural Sciences, Community College of Riyadh, King Saud University, Riyadh, Saudi Arabia.
${ }^{b}$ Department of Mathematics and General Sciences, Prince Sultan University, Riyadh, Saudi Arabia.

Abstract

In this paper, we introduce an interesting extension of the S-metric spaces called S_{b}-metric spaces, in which we show the existence of fixed point for a self mapping defined on such spaces. We also prove some results on the topology of the S_{b}-metric spaces. © © 2016 All rights reserved.

Keywords: Functional analysis, S_{b}-metric space, common fixed point. 2010 MSC: 54H25, 47H10.

1. Introduction

The concept of metric spaces has been generalized in many ways. Bakhtin [2] introduced the b-metric space, in which many researchers treated the fixed point theory. Czerwick [5] extended the Banach principle contraction and its generalizations under different contractions [1, 4, 6, 7, 10, 15, [16, 17, 18] and [19].

Several authors have investigated the S-metric space and generalized many results related to the existence of fixed point, see [8, 9, 11, 12, 14] and [20]. However, no work has extended the fixed point problem from the b-metric spaces to the S-metric spaces.

Inspired by the work of Bakhtin in [2], we first introduce the S_{b}-metric space as a generalization of the b-metric space, and then we prove some fixed point results under different types of contractions in a complete S_{b}-metric space.

Recall the definitions of the b-metric space and the S-metric space.
Definition $1.1([2])$. Let X be a nonempty set. A b-metric on X is a function $d: X^{2} \rightarrow[0, \infty)$ if there exists a real number $s \geq 1$ such that the following conditions hold for all $x, y, z \in X$:

[^0](i) $d(x, y)=0$ if and only if $x=y$,
(ii) $d(x, y)=d(y, x)$,
(iii) $d(x, z) \leq s[d(x, y)+d(y, z)]$.

The pair (X, d) is called a b-metric space.
Definition 1.2 ([13]). Let X be a nonempty set. An S-metric on X is a function $S: X^{3} \longrightarrow[0, \infty)$ that satisfies the following conditions, for all $x, y, z, t \in X$:
(i) $S(x, y, z)=0$ if and only if $x=y=z$,
(ii) $S(x, y, z) \leq S(x, x, t)+S(y, y, t)+S(z, z, t)$.

The pair (X, S) is called an S-metric space.
Now, we give the definition of the S_{b}-metric space.
Definition 1.3. Let X be a nonempty set and let $s \geq 1$ be a given real number. A function $S_{b}: X^{3} \rightarrow[0, \infty)$ is said to be S_{b}-metric if and only if for all $x, y, z, t \in X:$ the following conditions hold:
(i) $S_{b}(x, y, z)=0$ if and only if $x=y=z$,
(ii) $S_{b}(x, x, y)=S_{b}(y, y, x)$ for all $x, y \in X$,
(iii) $S_{b}(x, y, z) \leq s\left[S_{b}(x, x, t)+S_{b}(y, y, t)+S_{b}(z, z, t)\right]$.

The pair $\left(X, S_{b}\right)$ is called a S_{b}-metric space.
Remark 1.4. Note that the class of S_{b}-metric spaces is larger than the class of S-metric spaces. Indeed, every S-metric space is an S_{b}-metric space with $s=1$. However, the converse is not always true.

Example 1.5. Let X be a nonempty set and $\operatorname{card}(X) \geq 5$. Suppose $X=X_{1} \cup X_{2}$ a partition of X such that $\operatorname{card}\left(X_{1}\right) \geq 4$. Let $s \geq 1$. Then

$$
S_{b}(x, y, z)= \begin{cases}0 & \text { if } x=y=z=0 \\ 3 s & \text { if }(x, y, z) \in X_{1}^{3} \\ 1 & \text { if }(x, y, z) \notin X_{1}^{3}\end{cases}
$$

for all $x, y, z \in X S_{b}$ is a S_{b}-metric on X with coefficient $s \geq 1$.
Proof.
i) If $x=y=z$ then $S_{b}(x, y, z)=0$. Thus the first assertion of the definition of the S_{b}-metric space is satisfied.
ii) Let's prove the triangle inequality: $S_{b}(x, y, z) \leq s\left[S_{b}(x, x, t)+S_{b}(y, y, t)+S_{b}(z, z, t)\right](*)$.

- Case 1: If $(x, y, z) \notin X_{1}^{3}$. We have $S_{b}(x, y, z)=1 S_{b}(x, x, t) \geq 1, S_{b}(y, y, t) \geq 1$, and $S_{b}(z, z, t) \geq 1$, for all $t \in X$. Thus $(*)$ is holds $(1 \leq 3 s)$.
- Case 2: If $(x, y, z) \in X_{1}^{3}$. We distinguish two sub-cases:
- if $t \in X_{1},(*)$ is satisfied since $S_{b}(x, y, z)=S_{b}(x, x, t)=S_{b}(y, y, t)=S_{b}(z, z, t)=3 s$.
- if $t \notin X_{1}$, we have $S_{b}(x, x, t)=S_{b}(y, y, t)=S_{b}(z, z, t)=1$ and $S_{b}(x, y, z)=3 s$. Then, (*) holds.

Definition 1.6. Let $\left(X, S_{b}\right)$ be an S_{b}-metric space and $\left\{x_{n}\right\}$ be a sequence in X. Then
(i) A sequence $\left\{x_{n}\right\}$ is called convergent if and only if there exists $z \in X$ such that $S_{b}\left(x_{n}, x_{n}, z\right) \longrightarrow$ 0 as $n \longrightarrow \infty$. In this case we write $\lim _{n \longrightarrow \infty} x_{n}=z$.
(ii) A sequence $\left\{x_{n}\right\}$ is called a Cauchy sequence if and only if $S_{b}\left(x_{n}, x_{n}, x_{m}\right) \longrightarrow 0$ as $n, m \longrightarrow \infty$.
(iii) $\left(X, S_{b}\right)$ is said to be a complete S_{b}-metric space if every Cauchy sequence $\left\{x_{n}\right\}$ converges to a point $x \in X$ such that

$$
\lim _{n, m \rightarrow \infty} S_{b}\left(x_{n}, x_{n}, x_{m}\right)=\lim _{n, m \rightarrow \infty} S_{b}\left(x_{n}, x_{n}, x\right)=S_{b}(x, x, x) .
$$

(iv) Define the diameter of a subset Y of X by

$$
\operatorname{diam}(Y):=\operatorname{Sup}\left\{S_{b}(x, y, z) \mid x, y, z \in Y\right\} .
$$

Definition 1.7 (3) .
(i) Let E be a nonempty set and $T: E \longrightarrow E$ a selfmap. We say that $x \in E$ is a fixed point of T if $T(x)=x$.
(ii) Let E be any set and $T: E \longrightarrow E$ a selfmap. For any given $x \in E$, we define $T^{n}(x)$ inductively by $T^{0}(x)=x$ and $T^{n+1}(x)=T\left(T^{n}(x)\right)$; we recall $T^{n}(x)$ the nth iterative of x under T. For any $x_{0} \in X$, the sequence $\left\{x_{n}\right\}_{n \geq 0} \subset X$ given by

$$
\begin{equation*}
x_{n}=T x_{n-1}=T^{n} x_{0}, n=1,2, \ldots \tag{1.1}
\end{equation*}
$$

is called the sequence of successive approximations with the initial value x_{0}. It is also known as the Picard iteration starting at x_{0}.

2. Main result

Theorem 2.1. Let $\left(X, S_{b}\right)$ be a complete S_{b}-metric space and T be a continuous self mapping on X satisfy

$$
\begin{equation*}
S_{b}(T x, T y, T z) \leq \psi\left[S_{b}(x, y, z)\right] \text { for all } x, y, z \in X \tag{2.1}
\end{equation*}
$$

where $\psi:[0,+\infty) \longrightarrow[0,+\infty)$ is an increasing function such that

$$
\lim _{n \rightarrow \infty} \psi^{n}(t)=0 \text { for each fixed } t>0
$$

Then T has a unique fixed point in X.

Proof. Let $x \in X$ and $\epsilon>0$. Let n be a natural number such that $\psi^{n}(\epsilon)<\frac{\epsilon}{2 s}$. Let $F=T^{n}$ and $x_{k}=F^{k}(x)$ for $k \in \mathbb{N}$. Then for $x, y \in X$ and $\alpha=\psi^{n}$ we have

$$
\begin{aligned}
S_{b}(F x, F x, F y) & \leq \psi^{n}\left(S_{b}(x, x, y)\right) \\
& =\alpha\left(S_{b}(x, x, y)\right) .
\end{aligned}
$$

Hence, for $k \in \mathbb{N} S_{b}\left(x_{k+1}, x_{k+1}, x_{k}\right) \longrightarrow 0$ as $k \longrightarrow \infty$. Therefore, let k be such that

$$
S_{b}\left(x_{k+1}, x_{k+1}, x_{k}\right)<\frac{\epsilon}{2 s} .
$$

Let's define the ball $B\left(x_{k}, \epsilon\right)$ such that for every $z \in B\left(x_{k}, \epsilon\right):=\left\{y \in X \mid S_{b}\left(x_{k}, x_{k}, y\right) \leq \epsilon\right\}$. Note that $x_{k} \in B\left(x_{k}, \epsilon\right)$, therefore $B\left(x_{k}, \epsilon\right) \neq \emptyset$. Hence, for all $z \in B\left(x_{k}, \epsilon\right)$ we have

$$
\begin{align*}
S_{b}\left(F z, F z, F x_{k}\right) & \leq \alpha\left(S_{b}(x k, x k, z)\right) \\
& \leq \alpha(\epsilon)=\psi^{n}(\epsilon)<\frac{\epsilon}{2 s}<\frac{\epsilon}{s} . \tag{2.2}
\end{align*}
$$

Since $S_{b}\left(F x_{k}, F x_{k}, F x_{k}\right)=S_{b}\left(x_{k+1}, x_{k+1}, x_{k}\right)<\frac{\epsilon}{2 s}$. Thus,

$$
\begin{aligned}
S_{b}\left(x_{k}, x_{k}, F_{z}\right) & \leq s\left[S_{b}\left(x_{k}, x_{k}, x_{k+1}\right)+S_{b}\left(x_{k}, x_{k}, x_{k+1}\right)+S_{b}\left(F z, F z, x_{k+1}\right)\right] \\
& =s\left[2 S_{b}\left(x_{k}, x_{k}, x_{k+1}\right)+S_{b}\left(F z, F z, x_{k+1}\right)\right] \\
& \leq s\left[2 \frac{\epsilon}{2 s}+\frac{\epsilon}{s}\right]=\epsilon .
\end{aligned}
$$

Hence, F maps $B\left(x_{k}, \epsilon\right)$ to it self. Since $x_{k} \in B\left(x_{k}, \epsilon\right)$, we have $F x_{k} \in B\left(x_{k}, \epsilon\right)$. By repeating this process we get

$$
F_{x_{k}}^{m} \in B\left(x_{k}, \epsilon\right) \text { for all } m \in \mathbb{N} .
$$

That is $x_{l} \in B\left(x_{k}, \epsilon\right)$ for all $l \geq k$. Hence

$$
S_{b}\left(x_{m}, x_{m}, x_{l}\right)<\epsilon \text { for all } m, l>k .
$$

Therefore $\left\{x_{k}\right\}$ is a Cauchy sequence and by the completeness of X, there exists $u \in X$ such that $x_{k} \longrightarrow u$ as $k \longrightarrow \infty$. Moreover, $u=\lim _{k \rightarrow \infty} x_{k+1}=\lim _{k \rightarrow \infty} x_{k}=F(u)$. Thus, F has u as a fixed point.
we prove now the uniqueness of the fixed point for F. Since $\alpha(t)=\psi^{n}(t)<t$ for any $t>0$, let u and u_{1} be two fixed points of F.

$$
\begin{aligned}
S_{b}\left(u, u, u_{1}\right) & =S_{b}\left(F u, F u, F u_{1}\right) \\
& \leq \psi^{n}\left(u, u, u_{1}\right) \\
& =\alpha\left(S_{b}\left(u, u, u_{1}\right)\right) \\
& \leq S_{b}\left(u, u, u_{1}\right),
\end{aligned}
$$

$\Longrightarrow S_{b}\left(u, u, u_{1}\right)=0 \Longrightarrow u=u_{1}$ and hence, F has a unique fixed point in X.
On the other hand, $T^{n k+r}(x)=F^{k}\left(T^{r}(x)\right) \longrightarrow u$ as $k \longrightarrow \infty$. Hence, $T^{m} x \longrightarrow u$ as $m \longrightarrow \infty$ for every x. That is $u=\lim _{m \rightarrow \infty} T x_{m}=T(u)$. Thereby, T has a fixed point.

The following results extend the results of [4] to the S_{b}-metric space.

Lemma 2.2. Let $\left(X, S_{b}\right)$ be a complete S_{b}-metric space. Then, for every descending sequence $\left\{F_{n}\right\}_{n \geq 1}$ of nonempty closed subsets of X such that $\operatorname{diam}\left(F_{n}\right) \longrightarrow 0$ as $n \longrightarrow \infty$. Therefore, the intersection $\cap_{n=1}^{\infty} F_{n}$ contains one and only one point.

Proof. Let x_{n} be any point in F_{n}. Because of the decrease of the sequence $\left\{F_{n}\right\}_{n \geq 1}$, we have $x_{n}, x_{n+1}, x_{n+2}, \ldots \in F_{n}$.

Given $\epsilon>0$, there exists $n_{0} \in \mathbb{N}$ such that $\operatorname{diam}\left(F_{n_{0}}\right)<\epsilon$. We obtain $x_{n_{0}}, x_{n_{0}+1}, x_{n_{0}+2}, \ldots \in F_{n_{0}}$. For $m, n \geq n_{0}$, we have that

$$
S_{b}\left(x_{n}, x_{n}, x_{m}\right) \leq \operatorname{diam}\left(F_{n_{0}}\right)<\epsilon .
$$

Hence, the sequence $\left\{x_{n}\right\}_{n \geq 1}$ is a Cauchy sequence in the complete S_{b}-metric space. Thus, it is convergent. Let $x \in X$ such that $\lim _{n \longrightarrow \infty} x_{n}=x$. Now, for any given n we have that $x_{n}, x_{n+1}, x_{n+2}, \ldots \in$ F_{n}. Therefore, $x=\lim _{n \longrightarrow \infty} x_{n} \in \bar{F}_{n}^{n \longrightarrow \infty}=F_{n}$ since F_{n} is closed. Thus, $x \in \cap_{n=1}^{\infty} F_{n}$.

We now prove the uniqueness of x. If $y \in \cap_{n=1}^{\infty} F_{n}$ and $y \neq x$, then $S_{b}(x, x, y)=\alpha>0$. There exists $n \in \mathbb{N}$ large enough such that $\operatorname{diam}\left(F_{n}\right)<\alpha=S_{b}(x, x, y)$ which implies that $y \neq \cap_{n=1}^{\infty} F_{n}$, which is a contradiction.

Definition 2.3. Let $\left(X, S_{b}\right)$ be a S_{b}-metric space, $f: X \rightarrow \overline{\mathbb{R}}$ be a function.

- Let $x_{0} \in X, f$ is a lower semi continuous at x_{0} if for every $\epsilon>0$ there exists a neighborhood U of x_{0} such that $f(x)>f\left(x_{0}\right)-\epsilon$ for all $x \in U$.
- f is said to be lower semi continuous if it is lower semi continuous at every point of X.

Theorem 2.4. Let $\left(X, S_{b}\right)$ be a complete S_{b}-metric space (with $s>1$), such that the S_{b}-metric is continuous and let $f: X \rightarrow \overline{\mathbb{R}}$ be a a semi continuous function, proper and lower bounded mapping. Then for every $x_{0} \in X$ and $\epsilon>0$ with

$$
f\left(x_{0}\right) \leq \inf _{x \in X} f(x)+\epsilon,
$$

there exists a sequence $\left(x_{n}\right)_{n \in \mathbb{N}} \subset X$ and $x_{\epsilon} \in X$ such that:

$$
\begin{align*}
& \text { i) } S_{b}\left(x_{n}, x_{n}, x_{\epsilon}\right) \leq \frac{\epsilon}{2^{n}}, \quad n \in \mathbb{N}, \tag{2.3}\\
& \text { ii) } x_{n} \longrightarrow x_{\epsilon} \text { as } n \longrightarrow \infty, \tag{2.4}\\
& \text { iii) } f(x)+\sum_{n=0}^{\infty} \frac{1}{s^{n}} S_{b}\left(x_{n}, x_{n}, x\right)>f\left(x_{\epsilon}\right)+\sum_{n=0}^{\infty} \frac{1}{s^{n}} S_{b}\left(x_{n}, x_{n}, x_{\epsilon}\right) \text {, for every } x \neq x_{\epsilon}, \tag{2.5}\\
& \text { iv) } f\left(x_{\epsilon}\right)+\sum_{n=0}^{\infty} \frac{1}{s^{n}} S_{b}\left(x_{n}, x_{n}, x_{\epsilon}\right) \leq f\left(x_{0}\right) \leq \inf _{x \in X} f(x)+\epsilon . \tag{2.6}
\end{align*}
$$

Proof.
i) We consider the set

$$
\begin{equation*}
T x_{0}=\left\{x \in X \mid f(x)+S_{b}\left(x, x, x_{0}\right) \leq f\left(x_{0}\right)\right\} . \tag{2.7}
\end{equation*}
$$

As f is a lower semi continuous mapping and $x_{0} \in T x_{0}$, we obtain that $T x_{0}$ is nonempty and closed in $\left(X, S_{b}\right)$ and for every $y \in T x_{0}$

$$
\begin{equation*}
S_{b}\left(y, y, x_{0}\right) \leq f\left(x_{0}\right)-f(y) \leq f\left(x_{0}\right)-\inf _{x \in X} f(x) \leq \epsilon . \tag{2.8}
\end{equation*}
$$

We choose $x_{1} \in T x_{0}$ such that $f\left(x_{1}\right)+S_{b}\left(x_{1}, x_{1}, x_{0}\right) \leq \inf _{x \in T x_{0}}\left\{f(x)+S_{b}\left(x, x, x_{0}\right)\right\}+\frac{\epsilon}{2 s}$ and let

$$
\begin{equation*}
T x_{1}=\left\{x \in T x_{0} \left\lvert\, f(x)+\sum_{i=0}^{1} \frac{1}{s^{i}} S_{b}\left(x, x, x_{i}\right) \leq f\left(x_{1}\right)+S_{b}\left(x_{1}, x_{1}, x_{0}\right)\right.\right\} . \tag{2.9}
\end{equation*}
$$

Inductively, we can suppose that $x_{n-1} \in T x_{n-2}$ was already chosen and we consider

$$
\begin{equation*}
T x_{n-1}:=\left\{x \in T x_{n-2} \left\lvert\, f(x)+\sum_{i=0}^{n-1} \frac{1}{s^{i}} S_{b}\left(x, x, x_{i}\right) \leq f\left(x_{n-1}\right)+\sum_{i=0}^{n-2} \frac{1}{s^{i}} S_{b}\left(x_{n-1}, x_{n-1}, x_{i}\right)\right.\right\} . \tag{2.10}
\end{equation*}
$$

Let $x_{n} \in T x_{n-1}$ such that

$$
\begin{equation*}
f\left(x_{n}\right)+\sum_{i=0}^{n-1} \frac{1}{s^{i}} S_{b}\left(x_{n}, x_{n}, x_{i}\right) \leq \inf _{x \in T x_{n-1}}\left[f(x)+\sum_{i=0}^{n-1} \frac{1}{s^{i}} S_{b}\left(x, x, x_{i}\right)\right]+\frac{\epsilon}{2^{n} s^{n}} . \tag{2.11}
\end{equation*}
$$

Define now the set

$$
\begin{equation*}
T x_{n}:=\left\{x \in T x_{n-1} \left\lvert\, f(x)+\sum_{i=0}^{n} \frac{1}{s^{i}} S_{b}\left(x, x, x_{i}\right) \leq f\left(x_{n}\right)+\sum_{i=0}^{n-1} \frac{1}{s^{i}} S_{b}\left(x_{n}, x_{n}, x_{i}\right)\right.\right\} . \tag{2.12}
\end{equation*}
$$

It is easy to see that the set $T x_{n}$ is nonempty and closed. Using the relations (2.11) and (2.12), we obtain for every $y \in T x_{n}$

$$
f(y)+\sum_{i=0}^{n} \frac{1}{s^{i}} S_{b}\left(y, y, x_{i}\right) \leq f\left(x_{n}\right)+\sum_{i=0}^{n-1} \frac{1}{s^{i}} S_{b}\left(x_{n}, x_{n}, x_{i}\right),
$$

which gives

$$
\begin{aligned}
\frac{1}{s^{n}} S_{b}\left(y, y, x_{n}\right) & \leq\left[f\left(x_{n}\right)+\sum_{i=0}^{n-1} \frac{1}{s^{i}} S_{b}\left(x_{n}, x_{n}, x_{i}\right)\right]-\left[f(y)+\sum_{i=0}^{n-1} \frac{1}{s^{i}} S_{b}\left(y, y, x_{i}\right)\right] \\
& \leq\left[f\left(x_{n}\right)+\sum_{i=0}^{n-1} \frac{1}{s^{i}} S_{b}\left(x_{n}, x_{n}, x_{i}\right)\right]-\inf _{x \in T x_{n-1}}\left[f(x)+\sum_{i=0}^{n-1} \frac{1}{s^{i}} S_{b}\left(x, x, x_{i}\right)\right] \\
& \leq \frac{\epsilon}{2^{n} s^{n}}
\end{aligned}
$$

Thus, for all $y \in T x_{n}$ we have

$$
\begin{equation*}
S_{b}\left(y, y, x_{n}\right) \leq \frac{\epsilon}{2^{n}} \tag{2.13}
\end{equation*}
$$

ii) From (2.13), we can deduce that $S_{b}\left(y, y, x_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$, so $\operatorname{diam}\left(T x_{n}\right) \rightarrow 0$. As $\left(X, S_{b}\right)$ is a complete S_{b}-metric space and from Lemma 2.2 we have $\cap_{n=0}^{\infty} T x_{n}=\left\{x_{\epsilon}\right\}$. Using the equations (2.8) and (2.13) we obtain that $x_{\epsilon} \in X$ satisfies (2.3). Therefore,

$$
x_{n} \longrightarrow x_{\epsilon} \text { as } n \longrightarrow \infty .
$$

iii) As x_{ϵ} is the single intersection of all the sets $T x_{n}$, so for all $x \neq x_{\epsilon}$, we have $x \notin \cap_{n=0}^{\infty} T x_{n}$. Thus, there exists $m \in \mathbb{N}$ such that

$$
\begin{equation*}
x \in T x_{m-1} \text { and } x \notin T x_{m} . \tag{2.14}
\end{equation*}
$$

Using (2.12) and (2.14), we obtain

$$
\begin{equation*}
f(x)+\sum_{i=0}^{m} \frac{1}{s^{i}} S_{b}\left(x, x, x_{i}\right)>f\left(x_{m}\right)+\sum_{i=0}^{m-1} \frac{1}{s^{i}} S_{b}\left(x_{m}, x_{m}, x_{i}\right) . \tag{2.15}
\end{equation*}
$$

Thereby, (2.5) holds.
iv) Using (2.14) and the definition of the set $T x_{n-1}$ given by (2.10), we obtain

$$
\begin{equation*}
f(x)+\sum_{i=0}^{m-1} \frac{1}{s^{i}} S_{b}\left(x_{m}, x_{m}, x_{i}\right) \leq f\left(x_{m-1}\right)+\sum_{i=0}^{m-2} \frac{1}{s^{i}} S_{b}\left(x_{m-1}, x_{m-1}, x_{i}\right) . \tag{2.16}
\end{equation*}
$$

Similarly, by applying 2.16) to x_{m-1} we have that

$$
\begin{equation*}
f\left(x_{m-1}\right)+\sum_{i=0}^{m-2} \frac{1}{s^{i}} S_{b}\left(x_{m-1}, x_{m-1}, x_{i}\right) \leq f\left(x_{m-2}\right)+\sum_{i=0}^{m-3} \frac{1}{s^{i}} S_{b}\left(x_{m-2}, x_{m-2}, x_{i}\right) . \tag{2.17}
\end{equation*}
$$

By repeating this procedure enough times, we obtain

$$
f\left(x_{0}\right) \geq f\left(x_{m}\right)+\sum_{i=0}^{m-1} \frac{1}{s^{i}} S_{b}\left(x_{m}, x_{m}, x_{i}\right) .
$$

Moreover, for every $q \geq m$, we have

$$
f\left(x_{0}\right) \geq f\left(x_{m}\right)+\sum_{i=0}^{m-1} \frac{1}{s^{i}} S_{b}\left(x_{m}, x_{m}, x_{i}\right) \geq f\left(x_{q}\right)+\sum_{i=0}^{q-1} \frac{1}{s^{i}} S_{b}\left(x_{q}, x_{q}, x_{i}\right) \geq f\left(x_{\epsilon}\right)+\sum_{i=0}^{q} \frac{1}{s^{i}} S_{b}\left(x_{\epsilon}, x_{\epsilon}, x_{i}\right) .
$$

Then, (2.6) holds.
Next, we state this immediate consequence.
Corollary 2.5. Let $\left(X, S_{b}\right)$ be a complete S_{b}-metric space (with $s>1$), such that the S_{b}-metric is continuous and let $f: X \rightarrow \overline{\mathbb{R}}$ be a lower semi continuous, proper and lower bounded mapping. Then for every $\epsilon>0$ there exists a sequence $\left(x_{n}\right)_{n \in \mathbb{N}} \subset X$ and $x^{*} \in X$ such that:
i) $\quad x_{n} \longrightarrow x_{\epsilon}$, as $n \longrightarrow \infty \quad x_{\epsilon} \in X$,
ii) $f\left(x_{\epsilon}\right)+\sum_{n=0}^{\infty} \frac{1}{s^{n}} S_{b}\left(x_{\epsilon}, x_{\epsilon}, x_{n}\right) \leq \inf _{x \in X} f(x)+\epsilon$,
iii) $f(x)+\sum_{n=0}^{\infty} \frac{1}{s^{n}} S_{b}\left(x, x, x_{n}\right) \geq f\left(x_{\epsilon}\right)+\sum_{n=0}^{\infty} \frac{1}{s^{n}} S_{b}\left(x_{\epsilon}, x_{\epsilon}, x_{n}\right)$ for any $x \in X$.

Theorem 2.6. Let $\left(X, S_{b}\right)$ be a complete S_{b}-metric space (with $s>1$), such that the S_{b}-metric is continuous and let $T: X \rightarrow X$ be an operator for which there exists a lower semi continuous mapping $f: X \rightarrow \overline{\mathbb{R}}$, such that:
i) $\quad S_{b}(u, u, v)+s S_{b}(u, u, T u) \geq S_{b}\left(T_{u}, T_{u}, v\right)$,
ii) $\left.\frac{s^{2}}{s-1} S_{b}(u, u, T u) \leq f(u)-f(T u)\right)$, for any $u, v \in X$.

Then T has at least one fixed point.

Proof. Assume that for all $x \in X$ we have that $T x \neq x$. Using Corollary 2.5 for f, we obtain that, for each $\epsilon>0$ there exists a sequence $\left(x_{n}\right)_{n \in \mathbb{N}} \subset X$ such that $x_{n} \longrightarrow x_{\epsilon}$, as $n \longrightarrow \infty, x_{\epsilon} \in X$ and

$$
f(x)+\sum_{n=0}^{\infty} \frac{1}{s^{n}} S_{b}\left(x, x, x_{n}\right) \geq f\left(x_{\epsilon}\right)+\sum_{n=0}^{\infty} \frac{1}{s^{n}} S_{b}\left(x_{\epsilon}, x_{\epsilon}, x_{n}\right) \text { for any } x \in X .
$$

Since the above inequality holds for every $x \in X$, let put $x:=T x_{\epsilon}$ and since $T x_{\epsilon} \neq x_{\epsilon}$, we get that

$$
\begin{equation*}
f\left(x_{\epsilon}\right)-f\left(T x_{\epsilon}\right)<\sum_{n=0}^{\infty} \frac{1}{s^{n}} S_{b}\left(T x_{\epsilon}, T x_{\epsilon}, x_{n}\right)-\sum_{n=0}^{\infty} \frac{1}{s^{n}} S_{b}\left(x_{\epsilon}, x_{\epsilon}, x_{n}\right) . \tag{2.23}
\end{equation*}
$$

Let $u=x_{\epsilon}$ and $v=x_{n}$ in (2.21), we obtain

$$
\begin{equation*}
S_{b}\left(x_{\epsilon}, x_{\epsilon}, x_{n}\right)+s S_{b}\left(x_{\epsilon}, x_{\epsilon}, T x_{\epsilon}\right) \geq S_{b}\left(T x_{\epsilon}, T x_{\epsilon}, x_{n}\right) . \tag{2.24}
\end{equation*}
$$

From (2.23) and (2.24) we have

$$
\begin{align*}
f\left(x_{\epsilon}\right)-f\left(T x_{\epsilon}\right) & <\sum_{n=0}^{\infty} \frac{s}{s^{n}} S_{b}\left(x_{\epsilon}, T x_{\epsilon}, T x_{\epsilon}\right) \\
& \leq s S_{b}\left(x_{\epsilon}, T x_{\epsilon}, T x_{\epsilon}\right) \sum_{n=0}^{\infty} \frac{1}{s^{n}} \tag{2.25}\\
& \leq \frac{s^{2}}{s-1} S_{b}\left(x_{\epsilon}, T x_{\epsilon}, T x_{\epsilon}\right) .
\end{align*}
$$

In (2.22) we choose $u=x_{\epsilon}$. Then

$$
\begin{equation*}
\frac{s^{2}}{s-1} S_{b}\left(x_{\epsilon}, x_{\epsilon}, T x_{\epsilon}\right) \leq f\left(x_{\epsilon}\right)-f\left(T x_{\epsilon}\right) . \tag{2.26}
\end{equation*}
$$

From the inequalities (2.25) and (2.26) we get that

$$
\frac{s^{2}}{s-1} S_{b}\left(x_{\epsilon}, x_{\epsilon}, T x_{\epsilon}\right) \leq f\left(x_{\epsilon}\right)-f\left(T x_{\epsilon}\right)<\frac{s^{2}}{s-1} S_{b}\left(x_{\epsilon}, x_{\epsilon}, T x_{\epsilon}\right),
$$

which is a absurd. Therefore, there exists $x^{*} \in X$ such that $x^{*} \in T x^{*}$.

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Saud University, Saudi Arabia, for funding this research work.

References

[1] H. Aydi, M.-F. Bota, E. Karapnar, S. Mitrovi, A fixed point theorem for set-valued quasi-contractions in b-metric spaces, Fixed Point Theory Appl., 2012 (2012), 8 pages. 1
[2] I. A. Bakhtin, The contraction mapping principle in almost metric space, Functional Analysis, Ulianowsk. Gos. Ped. Ins., 30 (1989), 26-37.1, 1.1
[3] V. Berinde, Iterative Approximation of Fixed points, Springer, Berlin, (2007).1.7
[4] M. Bota, A. Molnar, C. Varga, On Ekeland's variational principle in b-metric spaces, Fixed Point Theory, 12 (2011), 21-28. 1,2
[5] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis, 1 (1993), 5-11.1
[6] A. K. Dubey, R. Shukla, R. P. Dubey, Some fixed point results in b-metric spaces, Asian J. Math. Appl., 2014 (2014), 6 pages. 1
[7] M. Kir, H. Kiziltunc, On Some Well Known Fixed Point Theorems in b-Metric Spaces, Turkish J. Anal. Number Theory, 1 (2013), 13-16. 1
[8] M. Mlaiki, Common fixed points in complex S-metric space, Adv. Fixed Point Theory, 4 (2014), 509-524. 1
[9] N. Mlaiki, $\alpha-\psi$-Contractive Mapping on S-Metric Space, Math. Sci. Lett., 4 (2015), 9-12. 1
[10] A. Mukheimer, $\alpha-\psi$ - ϕ-contractive mappings in ordered partial b-metric spaces, J. Nonlinear Sci. Appl., 7 (2014), 168-179.1
[11] K. Prudhvi, Fixed Point Theorems in S-Metric Spaces, Univer. J. Comput. Math., 3 (2015), 19-21.1
[12] S. Sedghi, N. Shobe, A Common unique random fixed point theorems in S-metric spaces, J. Prime Res. Math., 7 (2011), 25-34. 1
[13] S. Sedghi, N. Shobe, A. Aliouche, A generalization of fixed point theorems in S-metric spaces, Mat. Vesnik, 64 (2012), 258-266. 1.2
[14] S. Sedghi, N. Van Dung, Fixed point theorems on S-metric spaces, Mat. Vesnik, 66 (2014), 113-124. 1 .
[15] W. Shatanawi, Fixed Point Theory for Contractive Mappings Satisfying Φ-Maps in G-Metric Spaces, Fixed Point Theory Appl., 2010 (2010), 9 pages. 1
[16] W. Shatanawi, E. Karapinar, H. Aydi, Coupled Coincidence Points in Partially Ordered Cone Metric Spaces with a c-Distance, J. Appl. Math., 2012 (2012), 15 pages. 1
[17] W. Shatanawi, A. Pitea, Some coupled fixed point theorems in quasi-partial metric spaces, Fixed Point Theory Appl., 2013 (2013), 15 pages. 1
[18] C.Vetro, S. Chauhan, E. Karapinar, W. Shatanawi, Fixed Points of Weakly Compatible Mappings Satisfying Generalized φ-Weak Contractions, Bull. Malays. Math. Sci. Soc., 38 (2015), 1085-1105. 1
[19] S. Shukla, Partial b-Metric Spaces and Fixed Point Theorems, Mediterr. J. math., 11 (2014), 703-711. 1
[20] A. Singh, N. Hooda, Coupled Fixed Point Theorems in S-metric Spaces, Inter. J. Math. Stat. Invent., 2 (2014), 33-39. 1

[^0]: *Corresponding author
 Email addresses: nizar.souayah@yahoo.fr (Nizar Souayah), nmlaiki2012@gmail.com (Nabil Mlaiki)

